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ABSTRACT

KEYWORDS: thermoacoustic instabilities; dynamical systems; non-normality;

transient growth; sub-critical transition to instability; numerical

continuation; period-doubling; quasiperiodicity; routes to chaos.

Thermoacoustic instabilities severely restrict the operating regimes and reduce the life

of gas turbines as they induce large amplitude pressure fluctuations. During instabil-

ity, excessive vibrations and oscillatory thermal loads occur in the system. In order

to find safe operating ranges, where instabilities can be avoided, stability analysis of

thermoacoustic systems are performed. Thermoacoustic instabilities are analyzed using

models of thermoacoustic systems. Two time domain models of practical thermoacous-

tic systems are considered in the present investigation. First, a Rijke tube model in

which the heat release rate is modelled in terms of time delayed responses to acous-

tic perturbations. The second model is of a ducted premixed flame system in which a

partial differential equation is used to describe the evolution of the source of unsteady

heat release rate. Linear stability of thermoacoustic systems is performed using eigen-

values. Classical linear stability analysis based on eigenvalues is a robust estimator of

the asymptotic behavior of linear systems. However, thermoacoustic interaction is non-

normal and the associated eigenvectors are non-normal to each other. Transient growth

can occur due to the non-orthogonal eigenvectors and therefore the investigation of sta-

bility in thermoacoustic systems must adopt a non-modal approach.

A horizontal Rijke tube model whose evolution is described by a set of delay differ-

ential equations is considered. Analytical estimates of bifurcation points are employed

to identify the regions of bistability. The nature of the Hopf bifurcation along with

the estimates of the stability and amplitude of periodic states near the Hopf point are

obtained using the method of multiple scales. Estimates of fold bifurcation points are

obtained by employing the method of harmonic balance. Stability boundaries and bifur-

cation plots are obtained using numerical continuation methods. This thesis is the first
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work in which numerical continuation methods have been applied to the investigation

of thermoacoustic systems with an explicit time delay. In this model, transition to insta-

bility occurs via sub-critical Hopf bifurcation. The regions of global stability, global in-

stability and bistability are characterized. Further, interesting dynamical behavior such

as co-existing multiple attractors, quasiperiodic behavior and period doubling route to

chaos are observed. Results of linear stability boundaries and bifurcation behavior from

this reduced order model are compared with experiments.

A ducted premixed flame system is modelled using the acoustic equations for mo-

mentum and energy, together with the equation for the evolution of the flame front

obtained from the kinematic G-equation. As the unsteady heat addition acts as a volu-

metric source, the flame front is modelled as a distribution of monopole sources. The

state space variables in the model include the monopole source strengths in addition

to the acoustic variables. Inclusion of these variables in the state space is essential to

account for the transient growth due to non-normality. Thus, the energy due to fluctu-

ations considered in the this analysis accounts for the energy of the monopole sources

in addition to the acoustic energy. The optimal initial condition for transient growth,

has significant projections along the strength of the monopole distribution in addition

to projections along the acoustic variables of velocity and pressure. A parametric study

of the variation in transient growth due to change in parameters such as flame location

and flame angle is performed.

Comparison of linear and corresponding nonlinear evolutions highlights the role of

transient growth in sub-critical transition to instability. The notion of phase between

acoustic pressure and heat release rate as an indicator of stability is examined. Stability

boundaries and bifurcation plots for the ducted premixed flame system are obtained,

where both sub- and super-critical Hopf bifurcations are observed. In both the analysis

of a horizontal Rijke tube and a ducted premixed flame, the nature of the asymptotic

states of the system are identified using tools from dynamical systems’ theory. It is

observed that a system can exhibit different routes to chaos such as period doubling and

Ruelle-Taken’s routes for different configurations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Thermoacoustic systems consist of an acoustic field along with a source of unsteady

heat release rate. For example, the source of heat release rate fluctuations can be a

flame located within the duct as found in gas turbines or an electrically heated mesh as

in the case of a Rijke tube. Unsteady flow through the duct interacts with the source

of heat release rate and causes it to fluctuate. These heat release rate fluctuations can

further act as a source of acoustic fluctuations and the coupled system can reach self-

sustained large amplitude oscillations. These self-sustained oscillations are termed as

thermoacoustic instability. Thermoacoustic instabilities induce large amplitude pres-

sure fluctuations and are therefore responsible for excessive vibrations and oscillatory

thermal loads on the system. They can even cause flame blowout to occur. Thermoa-

coustic instabilities severely restrict the operating regimes and reduce the life of gas

turbines. Therefore, the need to avoid thermoacoustic instability plays a significant role

in the development of combustors for rockets and gas turbines (McManus et al., 1993).

The interaction between unsteady flow and heat release rate fluctuations can occur

in many ways. The unsteady flow velocity can directly modulate the surface area of

the flame which can lead to heat release rate fluctuations as investigated by Boyer and

Quinard (1990). Fluctuations in flow rates of the reactants can give rise to equivalence

ratio fluctuations which in turn can cause unsteady heat release rate (Lieuwen and Zinn,

1998). Acoustic oscillations can also modulate the burn rate of the flame directly (Wu

et al., 2003). The methods described above list some of the ways in which the acoustic

field directly interacts with the source of heat release rate fluctuations. However, this

interaction can also happen indirectly as follows. Flow within combustors have shear.

In a shear flow, acoustic oscillations can give rise to instability waves which can amplify

the roll up of the shear layer. Later the shear layer breaks down into small scale motions



Figure 1.1: Feedback loop in thermoacoustic systems.

giving rise to unsteady heat release rate (Poinsot et al., 1987). This indirect interaction

can also cause instability in thermoacoustic systems.

An illustration of the interaction between acoustic field and the source of unsteady

heat release rate is given in Fig. 1.1. The fluctuations in velocity u′ and pressure p′ due

to the acoustic field can cause heat release rate oscillations q̇′f . Lord Rayleigh (1878)

made the observation that if the heat release rate fluctuations q̇′f occur at the time of

greatest compression, i.e. when acoustic pressure is maximum, the amplitude of the

acoustic oscillation increases. Assuming the convention that heat added to the system

is positive, Rayleigh’s observation states that for maximum driving, both the evolutions

of acoustic pressure and the unsteady heat release rate must reach their respective max-

imums at the same time.

When the phase angle θ between the acoustic pressure and unsteady heat release rate

is between the range −90◦ < θ < 90◦, it indicates addition of energy to the acoustic

oscillations (acoustic driving). During thermoacoustic interaction, energy losses can

occur due to viscous dissipation, radiation from open ends, heat transfer, etc (acoustic

damping). If the energy added to acoustic oscillations from unsteady heat release rate is

more than the energy losses, the system becomes unstable and the oscillation amplitude

increases. Interactions of the unsteady heat release rate with the acoustic field drive

thermoacoustic instability over a time period T in a system of volume V , if the Rayleigh

criterion given below is satisfied (Putnam et al., 1986; Sterling and Zukowski, 1991;

Zinn and Lieuwen, 2006).

∫

dV

∫

T

p′(t)q̇′f (t) dt dV > Damping . (1.1)

Thermoacoustic instabilities are analyzed using models of thermoacoustic systems.

In general, models of thermoacoustic systems can include nonlinear effects in the dy-
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Figure 1.2: Evolution of acoustic velocity to a limit cycle in a linearly unstable Rijke
tube system.

namics of heat release rate and also in acoustic wave propagation. Large amplitude

fluctuations are observed in solid rocket motors of the order of 10 − 50% of the mean

pressure (Bloomshield et al., 1997). Therefore, nonlinear stability analysis of solid

rocket motors must include the nonlinear effects in acoustic wave propagation such as

steepening of a compression wave to form a shock (Yang et al., 1990; Culick, 2006;

Mariappan and Sujith, 2010b). Alternatively, thermoacoustic systems such as labo-

ratory combustors or gas turbine combustors are characterized with amplitudes of the

acoustic pressure fluctuations less than 5% of the mean pressure (Lieuwen, 2002) which

are not significant enough to introduce nonlinear gas dynamic effects (Dowling, 1997).

Thus stability analysis of these thermoacoustic systems include only nonlinear effects

in the heat release rate dynamics.

A typical evolution of acoustic velocity oscillations in a horizontal Rijke tube is

shown in Fig. 1.2. The system is linearly unstable and it is observed that the oscillations

grow from a small amplitude initial condition to self-sustained oscillations. During the

period of initial growth when the amplitude of the oscillations is small, the effect of the

nonlinear terms in the system model can be assumed to be negligible. The evolution of

the system can then be approximated using a set of linear differential equations. This

set of equations can be recast as
dχ

dt
= Bχ , (1.2)

where B is the linear operator and χ is the vector of state variables. Classical linear
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stability analysis investigates the eigenvalues λi of this linear operator B which are

in general complex numbers. The real part of λi indicates the growth rate and the

imaginary part indicates the frequency of oscillations. If all the eigenvalues λi of B

have negative real parts, the evolution decays and the system is linearly stable. If one

or more of λi have positive real part, the eigenvectors corresponding to the frequencies

specified by the value of Im(λi), grow at the rates specified by the magnitudes of the

corresponding Re(λi) and the system is linearly unstable.

The linear operator B is a function of the system parameters. Therefore, the eigen-

values λi change when the values of the system parameters are varied. When the real

part of λi changes from negative to positive value, the nature of stability of the sys-

tem changes and evolutions change qualitatively. This qualitative change in stability is

called a bifurcation. Parameter combinations at which the system loses linear stabil-

ity form the linear stability boundary. Classical linear stability analysis can be used to

identify the frequency and growth rate at the loss of linear stability. Using this infor-

mation, linear stability boundaries of the system can be determined for different system

configurations.

During instability, the amplitude of oscillations grows exponentially to large values

and reaches a constant value as shown in Fig. 1.2, when the acoustic driving and acous-

tic damping balance each other. This constant amplitude oscillation is called as a limit

cycle oscillation. Nonlinear effects become significant at large amplitudes of oscilla-

tions. The amplitude of limit cycles cannot be predicted by a linear stability analysis.

Further, during large amplitude evolutions, the frequency of oscillations can change

over time. However, accurate estimation of the amplitude and frequency of acoustic os-

cillations during limit cycle is important from the design point of view for gas turbines

(Zinn and Lieuwen, 2006). Therefore a nonlinear stability analysis of thermoacoustic

systems is required. Results from nonlinear stability analysis are collected in a visual

representation of the system state for different parameter values, i.e. a bifurcation plot.

The next section lists in detail previous works related to both linear and nonlinear sta-

bility analysis of thermoacoustic systems.
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1.2 Stability analysis of thermoacoustic systems

Stability analysis of thermoacoustic systems have been performed in order to under-

stand the mechanisms which cause thermoacoustic instability, to establish stable ranges

of operation and to identify limit cycle characteristics. Thermoacoustic system are gov-

erned by the acoustic equations for momentum and energy along with a model for the

unsteady heat release rate. Heat release rate fluctuations can be modelled using either

a response function (Schuller et al., 2003; Dowling, 1997) or using a separate evolu-

tion equation Dowling (1999). The model of a thermoacoustic system consists of a set

of partial differential equations. These partial differential equations are converted into

ordinary differential equations by either a modal expansion (Zinn and Lores, 1971; Mc-

Manus et al., 1993) or by spatial discretisation (Schmid and Henningson, 2001) which

are then linearized. Classical linear stability analysis investigates the eigenvalues of the

set of linear equations to determine the stability of the system. Nonlinear stability anal-

ysis of thermoacoustic system are performed using the describing function technique

(Dowling, 1997; Noiray et al., 2008). In the describing function technique, the quasi-

linear approximation of the unsteady heat release rate response is used as the source

term in the acoustic energy equation. In the following subsections, stability analysis of

different thermoacoustic systems are briefly reviewed. Both linear and nonlinear stabil-

ity analysis are considered for each system and the results of linear stability analysis are

listed before the results of nonlinear stability analysis in each subsection.

1.2.1 Rijke tube

The Rijke tube consists of a source of heat release rate fluctuations such as an electrical

heater located within a duct which is open at both ends (Rijke, 1859). The power

supplied to the heater serves to cause thermoacoustic oscillations in the Rijke tube. Self-

sustained thermoacoustic oscillations were observed in a Rijke tube when the heater was

positioned at certain axial locations of the tube with the heater power above a threshold

power level (Rijke, 1859). An explanation for the occurrence of this instability in a

Rijke tube was given by Rayleigh (1878). He explained that instability occurs when the

heater is placed at locations where the unsteady heat release rate is in phase with the
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acoustic pressure oscillations. Carvalho et al. (1989) used a linear model to describe

the unsteady heat release rate due to acoustic velocity at the heater. The excitation

of different modes at different axial locations of the heater was predicted using a linear

stability analysis. Stability analysis of the Rijke tube with multiple sources and complex

geometries was performed by Bittani et al. (2002).

The pressure fluctuations arising during instability in a Rijke tube are not significant

enough to include the nonlinear effects in acoustic wave propagation. Therefore, only

the nonlinearity in the heat release rate response of the heater to acoustic velocity per-

turbations is considered. A nonlinear stability analysis of a Rijke tube was performed by

Kwon and Lee (1985). Computational fluid dynamic (CFD) technique based analysis

were also used to study Rijke tube oscillations with the heat source being considered as

a heated flat plate (Hantschk and Vortmeyer, 1999) or as a circular cylinder (Mariappan

and Sujith, 2010a). Hantschk and Vortmeyer (1999) showed that the limit cycle am-

plitudes during instability are a function of the nonlinear response of the heater. Heckl

(1990) performed both theoretical and experimental analysis of instabilities in a Ri-

jke tube. She concluded that flow reversal occurring at the heater and losses from the

ends of the duct were the two deciding factors in determining limit cycle amplitude.

The transfer functions obtained from CFD simulations of flow around heated cylinders

(Kwon and Lee, 1985) have been used for nonlinear stability analysis of a Rijke tube

(Matveev, 2003b). Matveev (2003b) also performed experiments to obtain stability

maps and bifurcation plots for an electrically heated horizontal Rijke tube.

1.2.2 Premixed flame

The model of a ducted premixed flame can be used to investigate thermoacoustic in-

stabilities in laboratory combustors. The stability characteristics of a ducted premixed

flame can be investigated using a kinematic approach to model the flame front (Kerstein

et al., 1988). Boyer and Quinard (1990) used this kinematic model of a premixed flame

to obtain the response of the premixed flame front to acoustic velocity perturbations.

Bloxsidge et al. (1988) performed a linear stability analysis for a premixed flame sta-

bilized in a duct. Predictions for the frequency and growth rate of oscillations near the
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onset of instability were obtained from this linear analysis which matched the experi-

mental results of Langhorne (1988). The analysis by Bloxsidge et al. (1988) indicated

that the relationship between heat release rate oscillations and the acoustic velocity fluc-

tuations at the flame front is a function of the frequency of oscillations and the mean

flow.

Fleifil et al. (1996) investigated the response of a premixed flame front to different

acoustic frequencies and observed that low frequency oscillations have a strong impact

on the heat release rate oscillations. This relationship between the response of the flame

front and acoustic velocity perturbations can be obtained as transfer functions in the

linear regime. The premixed flame is forced at different frequencies ω with an acoustic

velocity amplitude ε = u′/ū. The resulting fluctuations in heat release rate q̇′f over a

steady heat release rate of ˙̄qf are measured. Transfer function TF of a flame is complex

valued function of frequency which is calculated as

TF (f) =
q̇′f/ ˙̄qf

u′/ū
. (1.3)

Schuller et al. (2003) used a linear model for the flame front and derived transfer func-

tions for conical and V-flame configurations. The derived analytical expressions for

linear transfer functions matched transfer functions obtained from numerical simula-

tions. Experiments were performed for both V-flame (Durox et al., 2005) and conical

flame (Birbaud et al., 2006) configurations to obtain their transfer function characteris-

tics. Annaswamy et al. (1997) employed an evolution equation for the heat release rate

which is valid in the linear regime in addition to the evolution of acoustic variables to

study the stability of a ducted premixed flame.

Nonlinear stability analysis of premixed flames include the nonlinearity in the re-

sponse of the unsteady heat release rate to acoustic velocity perturbations. This is be-

cause, during instabilities in premixed combustors, the acoustic pressure fluctuations

encountered are not large enough to cause nonlinear effects of acoustic wave propaga-

tion to become significant (Peracchio and Proscia, 1999). Dowling (1997) proposed a

nonlinear model for the heat release rate response of a premixed flame, which saturates

when the acoustic velocity amplitude at the flame holder approaches the mean flow

7



velocity. Experimental investigations of the nonlinear response of a ducted, conical,

laminar premixed flame (Karimi et al., 2009) and an ensemble of anchored premixed

flames (Noiray et al., 2006) subjected to acoustic excitation of varying amplitudes were

performed to characterize the transfer function of the premixed flame. Noiray et al.

(2008) used the amplitude dependent transfer functions to investigate the stability of a

ducted premixed flame system using the describing function approach.

Dowling (1999) used the front-tracking equation to model the evolution of a pre-

mixed flame in the investigation of the thermoacoustic instability in a ducted premixed

flame. The equations for the acoustic field are evolved together with the nonlinear front

tracking equation for the flame. During instability, large amplitude oscillations can oc-

cur which can cause the flame to flashback for part of the cycle. Flash back of the flame

occurs when the mean velocity is lower than the speed at which the flame front is propa-

gating into the unburnt mixture, i.e. the laminar flame speed. Dowling (1999) modelled

a ducted premixed flame which can capture flashback during part of the cycle and used

this model to investigate nonlinear self-excited oscillations in the system. Thermoa-

coustic instabilities are also encountered in cases when the flame is not premixed. The

next subsection details some of the literature which investigate thermoacoustic instabil-

ity in non-premixed or diffusion flames.

1.2.3 Non-premixed flames

Investigations of non-premixed combustion systems or diffusion flames use the classical

Burke-Schumann geometry (Burke and Schumann, 1928) for analysis. This model ne-

glects stream-wise diffusion to approximate the diffusion flame within a narrow zone or

surface. Unsteady analysis of diffusion flames was performed by Cuenot et al. (2000)

using laminar flamelet models. Response of the diffusion flame system to acoustic

forcing was studied experimentally (Hertzberg, 1997; Buckmaster, 2002). Nonlinear

analysis of diffusion flames listed below consider only the nonlinearity in the heat re-

lease rate response to acoustic velocity perturbations. This is because, similar to the

premixed combustors, amplitude of the limit cycle oscillations are not large enough to

induce nonlinear effects in acoustic wave propagation in diffusion flame driven ther-
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moacoustic systems.

Tyagi et al. (2007a) highlighted the nonlinearity in the combustion response of non-

premixed flames to velocity perturbations. Results obtained using the infinite rate chem-

istry were compared with results obtained when the effects of finite rate chemistry were

included. The nonlinear response of the diffusion flame system to mass fraction was in-

vestigated using analytical methods by Tyagi et al. (2007b). They also used numerical

methods to analyze the nonlinear response of a diffusion flame to acoustic velocity os-

cillations. Balasubramanian and Sujith (2008b) adopted an analytical approach to inves-

tigate the effect of velocity fluctuations on the diffusion flame response and concluded

that the response has an exponential dependence on the amplitude of fluctuations. This

heuristic model for the unsteady heat release rate developed by Balasubramanian and

Sujith (2008b), when combined with an acoustic model, exhibits many nonlinear phe-

nomena such as saturation and dominant mode change during evolution Yoon et al.

(2001).

1.2.4 Thermoacoustic engines

Thermoacoustic instabilities are also observed in thermoacoustic engines where the

temperature gradient across the stack can lead to instabilities (Swift, 1988). Linear

stability analysis of a thermoacoustic engine was performed by Atchley (1992) whose

analysis of a helium-filled prime mover matched quality factors for the first three lon-

gitudinal modes of oscillations obtained from experiments. Watanabe et al. (1997) per-

formed a linear stability analysis of quasi- one-dimensional model of a thermoacoustic

engine. A time domain model of the system was formulated and predictions from the

model were compared with data from experiments.

Yuan et al. (1997) performed the nonlinear stability analysis of the same quasi-

one-dimensional model of a thermoacoustic engine. The results of the nonlinear model

when compared with experiments were able to describe the growth and saturation of os-

cillations during instability. A two-dimensional model for thermoacoustic engines was

developed by Hamilton et al. (2002) who employed it for the investigation of nonlinear

oscillations in a thermoacoustic engine. Recently, a low Mach number analysis of ther-
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moacoustic engines was performed by Hireche et al. (2010). This time-domain model

employs a singular perturbation technique to reduce computational effort required to

model the stack and captured transient processes when amplitude grows before reach-

ing a steady state.

1.2.5 Solid rocket motors

Analysis of thermoacoustic instabilities in solid rocket motors (SRMs) has been an area

of interest as they can resonate with structural modes of the rocket, cause melting of

combustor walls and can damage the payload with excessive vibrations (Sutton, 2001).

Linearized equations for thermoacoustic instability in solid rocket motors were investi-

gated by Culick (1963). Complex frequencies were obtained for the instability which

can charaterise both the frequency of oscillations and its growth rate. Linear response

functions for the propellant response to oscillations in the acoustic variables were ob-

tained to investigate thermoacoustic instability of the solid rocket motor. Admittance

functions were obtained by (Culick, 1968) which related the fluctuations in mass ad-

dition rate were related to acoustic velocity and pressure fluctuations. The admittance

function was experimentally obtained by Price (1984). Inclusion of other phenomena

such as vorticity (Flandro, 1995a) and flow turning (Flandro, 1995b) were also per-

formed in the linear stability analysis of solid rocket motors.

In contrast to other thermoacoustic systems described previously in subsections

1.2.1 to 1.2.4, nonlinear effects due to acoustic wave propagation cannot be ignored

in solid rocket motors. Culick (1976) included the nonlinear gas dynamic effects and

obtained an analytical condition for the existence of limit cycle oscillations. Nonlineari-

ties in the response of propellant to acoustic perturbations were also included by Levine

and Baum (1993) to analyze the stability of solid rocket motors. Culick (1994) showed

that nonlinear gas dynamic effects are not sufficient to cause triggering. Wicker et al.

(1996) included nonlinear coupling between unsteady burn rate and acoustic variables

to demonstrate the possibility of triggered instability. Jahnke and Culick (1994) applied

the continuation methods from dynamical systems’ theory to characterize instabilities

in solid rocket motors. Pitchfork and torus bifurcations were observed in this analysis.
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Ananthkrishnan et al. (2005) addressed the problem of modal truncation in the determi-

nation of stability in solid rocket motors. Their model for a solid rocket motor included

nonlinear combustion response with a velocity coupling term and was seen to reproduce

sub-critical transition to instability observed in experiments.

1.2.6 Summary of review on stability analysis

The above review is incomplete and serves only to introduce previously adopted ap-

proaches to stability analysis in thermoacoustic systems. Linear analysis of stability

has been performed using the classical approach of examining the eigenvalues of the

linear set of ordinary differential equations obtained for the system. If all eigenvalues

were negative, the system was considered to be stable to perturbations. Nonlinear sta-

bility analysis has been performed using both a response function for the nonlinear heat

release rate model (Dowling, 1997) or using a nonlinear evolution equation (Dowling,

1999) to model the unsteady heat release rate. Nonlinear stability analysis is necessary

to characterize the asymptotic state of system during instability. Also, an interesting

dynamical behavior observed in solid rocket motors when a stable system became ‘trig-

gered’ to instability with a large amplitude initial condition. This behavior is discussed

in the next section.

1.3 Sub-critical transition to instability

The stability of a system changes from stable to unstable when a system parameter is

varied. This change in stability can occur in one of two ways. Super-critical transi-

tion to instability is observed when the stability of the system at a given configuration

does not depend on the initial condition. Sub-critical transition to instability occurs

when a linearly stable system becomes unstable and asymptotically reach another state

for suitable initial conditions (Hillborn, 1994). Wicker et al. (1996) defined triggered

instability as

"Triggered instability refers to initiation of unstable pressure oscillations by a finite

amplitude pulse in a system that is otherwise stable to small perturbations."
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Figure 1.3: Bifurcation plot for the variation of heater power in a horizontal Rijke tube
displaying sub-critical transition to instability. Globally stable (Region A),
globally unstable (Region C) and bistable (Region B) are marked.

A typical bifurcation plot of a horizontal Rijke tube is shown in Fig. 1.3 in which

a measure of the acoustic velocity of the system is plotted as a function of the heater

power. The bifurcation plots exhibits sub-critical transition to instability and the range

of heater power can be divided into three different regions. In the region marked by

A, perturbations of any magnitude decay with time. This region is therefore known

as the region of global stability. The region marked by C is linearly unstable and any

perturbation in this region causes the system to reach a limit cycle. Region C is also

called the region of global instability. In region B shaded in grey, the system can reach

either a steady state or limit cycle oscillations depending on the amplitude of the initial

condition. As two stable states of the system co-exist, this region is called as the region

of bistability. In contrast, super-critical transition to instability consists of only regions

A and C with no region of bistability between them.

In Fig. 1.3 the solid circles indicate stable solutions and hollow circles indicate un-

stable solutions. The unstable solutions are not observed as asymptotic states of the

system but are the projections of the unstable limit cycles on the plane of the bifurca-

tion plot. An initial condition above the value given by the these unstable solutions will

cause the system to become unstable and evolve to limit cycle oscillation. Therefore,

this type of triggered instability is observed as a hysteresis loop in experiments. For

smooth variation of the parameter, transition occurs at different parameter values based
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on the current state of the system as stable or unstable. In systems with hysteresis, the

range of parameters for which the system is stable becomes a function of the amplitude

of the perturbation. This sensitivity to the amplitude of the initial perturbation results

in difference between the stability boundaries determined from a linear and nonlinear

analysis. Hysteretic behavior is also observed in thermoacoustic systems such as the

Rijke tube (Matveev, 2003b) and premixed combustors (Lieuwen, 2002) in addition to

solid rocket motors. Experiments of a premixed combustor exhibited both sub-critical

and super-critical transition to instability were observed (Lieuwen, 2002).

Lieuwen (2002) also notes that triggering does not always require a large amplitude

initial perturbation to make the system reach a limit cycle. The system can evolve to

a limit cycle from a small but finite amplitude initial condition which is of the level of

noise in the system. This behavior is compared to hydrodynamic stability of a laminar

Poiseuille flow. To quote Zinn and Lieuwen (2006),

" Although large-amplitude disturbances are generally required to initiate unstable

oscillations in nonlinearly unstable systems, a system may be nonlinearly unstable at

low-amplitude disturbances that are of the order of the background noise level. This

scenario is somewhat analogous to the hydrodynamic stability of a laminar Poiseuille

flow, which is linearly stable but becomes increasingly susceptible to destabilization by

nonlinear mechanisms with increasing Reynolds numbers."

The next section explores the linear mechanism of non-normality and the transient

growth resulting from non-normality which causes Poiseuille flow to become more sus-

ceptible to instability. This same mechanism can cause sub-critical transition to insta-

bility in thermoacoustic systems from a small but finite amplitude initial condition. The

phenomenon of non-normality causes finite time amplification of perturbations in a sys-

tem. It was first investigated in the context of meteorological systems by Farrell (1988a)

and Farrell and Ioannou (1993). Parallel investigations into the transition to turbulence

in laboratory shear flows were investigated (Trefethen et al., 1993; Chagelishvili et al.,

1994, 1996). The non-normal nature of the shear flows has been associated with the

mechanism of sub-critical transition to instability or bypass transition (Farrell, 1988b).

The next section lists literature which investigate non-normal effects in the occurrence

of hydrodynamic instabilities and thermoacoustic instabilities.
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1.4 Non-normality

Hydrodynamic instability is of interest in diverse fields such as engineering, meteoro-

logical, oceanography and astrophysical systems as they are governed by the mechanics

of fluid flow (Drazin and Reid, 2004). Hydrodynamic stability in viscous shear flows

has been investigated using classical linear stability analysis of the Orr-Sommerfeld

equation. Critical Reynolds numbers for transition to instability in plane Poiseuille

flow has been calculated using this method to be Re = 5770 (Orzag, 1971). However,

experimentally obtained values for this critical Reynolds number was found to vary

between 1035 < Re < 8000 (Gustavsson, 1981). Gustavsson (1981) attributed this

discrepancy between calculated and observed critical Reynolds numbers, to the normal

mode assumption used in classical stability analysis. Classical linear stability analy-

sis using eigenvalues describes only the asymptotic state of the evolution of a system.

Therefore, it is incapable of capturing transient behavior of the system. Relaxation of

the normal mode assumption in stability analysis can give rise to linear mechanisms

which can cause short-time algebraic growth of disturbances. If the transient growth is

large enough to cause nonlinear effects to become significant, the system can transition

to instability (Schmid, 2007). This non-modal approach to stability analysis has been

adopted to explain transition to instability in hydrodynamic flows (Butler and Farrell,

1992; Reddy and Henningson, 1993; Schmid and Henningson, 2001).

Linear equations governing the evolution of a system can be written of the form

given in Eqn. 1.2 where χ is the vector of state variables and B is a linear operator.

Non-normality is a property of the operator B such that it does not commute with its

adjoint, i.e. BBT 6= BT B (Schmid and Henningson, 2001). Non-normal systems have

non-orthogonal eigenvectors and can exhibit transient growth (i.e. finite time growth)

even when the eigenvalues indicate asymptotic stability. Consider Fig. 1.4 which shows

two eigenvectors of a non-normal system at different instances of time t1 and t2. A lin-

early stable system with all its eigenvalues having a negative real part indicates that the

evolution of the system projected along the eigenvectors will decay with time. The rate

of decay of the eigenvectors will be dictated by the real part of the respective eigenval-

ues. Figure 1.4 (a) shows the resultant of the eigenvectors e1 and e2 at time t1 as R. At

a later instant in time t2, both the eigenvectors e1 and e2 have decayed in magnitude to
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Figure 1.4: Transient growth in a non-normal system. Non-orthogonal eigenvectors e1

and e2 are given at (a) time t = t1 and (b) t = t2 > t1. The eigenvectors
decay with time while the resultant R displays transient growth.

vectors e′1 and e′2 as shown in Fig. 1.4 (b). However, the resultant given by R′ has grown

in magnitude. This growth is transient and eventually the resultant vector also decays

along with the eigenvectors. Transient growth due to non-normality can be quantified

with tools such as pseudospectra of the linear operator, pseudospectral abscissa and

Kreiss constant of the linear operator B (Trefethen and Embree, 2005). Maximum tran-

sient growth can be obtained by perturbing the system with the optimal initial condition.

The optimal initial condition can be obtained for a given system configuration by the

singular value decomposition (SVD) of the linear operator (Farrell and Ioannou, 1996;

Schmid and Henningson, 2001) or by the method of adjoint optimization (Bottaro et al.,

2003; Mariappan and Sujith, 2010a; Juniper, 2010).

Similar to hydrodynamic stability theory, classical stability analysis of thermoacous-

tic systems listed in Section 1.2, also assume a modal approach. However, the assump-

tion of normal modes holds good for acoustic fields in resonators only when the acoustic

boundary conditions specify a fully open or closed end and in the absence of oscilla-

tory heat addition (e.g. combustion). Recently, Nicoud et al. (2007) have shown that

the presence of a source of unsteady heat release and non-trivial boundary conditions

can make the eigenmodes non-orthogonal. Balasubramanian and Sujith (2008a) have

demonstrated that the linear operator governing thermoacoustic systems is non-normal.

Therefore, a modal approach to stability analysis can be misleading in thermoacoustic

systems. Both hydrodynamic and thermoacoustic systems are governed by nonlinear

equations. In hydrodynamic systems the nonlinear terms in the governing differential

equations conserve kinetic energy (Chu and Kovasznay, 1958). The conservative nature

of the nonlinear terms makes a linear mechanism of growth to be a necessary condition
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for the occurrence of sub-critical transition to instability (Reddy and Henningson, 1993;

Krechetnikov and Marsden, 2009). In thermoacoustic systems, the nonlinear terms in

the governing equations do not conserve energy. The non-conservative nature of the

nonlinear terms relaxes the need for a linear mechanism of growth to be necessary for

sub-critical transition to instability. Therefore, sub-critical transition to instability in

thermoacoustic systems can occur even when transient growth due to non-normality is

not significant.

Balasubramanian and Sujith (2008a) investigated thermoacoustic instability in a

ducted diffusion flame to characterize its non-normal and nonlinear behavior. A Burke-

Schumann type geometry was chosen for the ducted diffusion flame and solved in a

time-domain model using the Galerkin technique. The resulting system was found to

be non-normal and transient growth in the energy of fluctuations was observed. This

transient growth of energy was found to be larger for system configurations when the

Peclet number Pe was larger, i.e. the evolution was dominated by the convective terms

in the equation. Also, sub-critical transition to instability was exhibited by this system

from a small but finite amplitude initial condition. Balasubramanian and Sujith (2008c)

also investigated transient growth in a simple model of a horizontal Rijke tube. They

calculated the dependence of transient growth on the time lag and heater location. Pseu-

dospectra of the linear operator was used to investigate pseudoresonance in the Rijke

tube system. The phase between heat release rate fluctuations and the acoustic pres-

sure was shown to evolve to 90◦ in the absence of damping in the system. When the

phase is 90◦, unsteady heat release rate does not affect the acoustic pressure evolution

and the system has reached a self-sustained limit cycle oscillation. The evolution of

an initially decaying system was investigated. It was observed that a shift in the domi-

nant frequency occurred during the evolution during to nonlinear coupling between the

different frequencies.

Culick (1997) performed an ordering analysis and observed that the effect of cou-

pling between the different Galerkin modes in the linear regime is of an order smaller

than necessary, to affect the eigenvalues. Based on the above result, they argued that

the neglecting the coupling between different modes in the linear regime was justi-

fied. Annaswamy et al. (1997) advocated the importance of including the effects of
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linear coupling in the investigation of thermoacoustic instabilities. They showed that

the inclusion of linear coupling affects both the energy amplification and attenuation

characteristics of the unsteady heat release rate. They demonstrated the consequences

of assuming modal coupling in the design of a model based active controller. Kedia

et al. (2008) investigated the consequences of ignoring linear coupling in stability anal-

ysis of thermoacoustic models. Using tools such as pseudospectra and Henrici index,

they analyzed transient growth in thermoacoustic systems. They observed that when

linear coupling is ignored, there is only a negligible change in the eigenfrequency of the

system. However, the exclusion of linear coupling terms can alter the transient growth

observed significantly. Therefore, it must be ensured that the transient behavior of the

system does not change significantly due to the inclusion of linear coupling terms. Na-

garaja et al. (2009) discussed the importance of using singular values to characterize

energy growth during combustion instabilities. They argued that eigenvalues describe

the asymptotic state of the system and that quantification of the transient behavior of the

system can be obtained by singular value decomposition. The obtained optimal initial

conditions for a simple model of a Rijke tube. They derived conditions for no energy

growth and also performed a parametric analysis of the effect of system parameters on

transient growth.

Tulsyan et al. (2009) investigated non-normal effects in a thermoacoustic system

with vortex shedding. Pseudospectra was used to analyze the non-normal behavior of

the system. They also showed that the vortex-based combustor reached different limit

cycles for different initial conditions to the system. Mariappan and Sujith (2010b) per-

formed a non-modal stability analysis of thermoacoustic instability in a solid rocket

motor with homogenous propellant. Transient growth due to the non-normal nature of

the system is shown to play a role in sub-critical transition to instability. Kulkarni et al.

(2011) investigated the failure of traditional controllers based on classical linear stabil-

ity. They designed a linear controller which can control the transient growth observed in

non-normal system, thereby preventing transition to instability due to transient growth.

Selimefendigil et al. (2011) performed non-modal stability analysis for an electri-

cally heated horizontal Rijke tube system. The response of the heater to acoustic ve-

locity perturbations was obtained using a linear correlation based system identification
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method. The obtained correlation was used to construct a low order model of the Rijke

tube. Maximum growth factor and transient growth obtained from the low order model

based on King’s law (King, 1914) is compared with the identified model obtained from

CFD. Wieczorek et al. (2010) investigated the non-normal nature of thermoacoustic in-

teraction, including the mean flow effects. A one-dimensional analysis of a duct with a

flame and a choked isentropic nozzle following it was considered. Eigenmodes of the

system were determined using linearized Euler equations. Transient amplification due

to non-normality in the system was calculated using the obtained eigenmodes. Weic-

zorek (2010) defined a measure for the maximum amplification of energy in this system

which include the mean flow effects. The energy of fluctuations should include the con-

tributions from the convected vorticity and entropy modes in addition to the acoustic

energy.

Waugh et al. (2010) investigated the effect of additive stochastic noise to sub-critical

bifurcation occurring in a Rijke tube model. They obtained stochastic bifurcation plots

which indicate probability of the system being triggered to instability for a linearly sta-

ble configuration. Increasing amplitudes of noise in the system was observed to increase

the range of the bistable region. Waugh et al. (2011) compared bypass transition in hy-

drodynamic stability to the triggering instability observed in thermoacoustic systems.

They observed that initial perturbations with large amplitudes at low frequencies are

more effective at triggering a system to instability. Juniper (2010) used the method of

adjoint optimization to obtain the most dangerous initial condition which can trigger a

Rijke tube system to instability. He draws an analogy between sub-critical transition

to instability due to transient growth, which is observed in thermoacoustic systems to

‘bypass transition’ observed during transition to turbulence in fluid flows. Mangesius

and Polifke (2010) developed a state-space model based on a frequency-domain net-

work model of a thermoacoustic system. This model allows efficient computation of

the pseudospectrum of the evolution operator and it is easily adapted to systems with

complex topology.

In all the above mentioned applications of non-modal stability analysis in thermoa-

coustic systems, a measure or norm of the system much be chosen to quantify transient

growth due to non-normality. The choice of an appropriate norm for the energy due to
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fluctuations is discussed in detail in the next section.

1.5 Quantification of disturbance energy

The energy due to fluctuations in a system forms a measure or norm to characterize

the transient growth in the system. Disturbance energy is the energy associated with

fluctuations super-imposed over a base flow. It should account for contributions from

all the constituent phenomena in the system. Kinetic energy was chosen as the natu-

ral measure to describe transient growth due to non-normality for incompressible fluid

flows (Schmid and Henningson, 2001). However, there has been no such consensus on

the appropriate expression for disturbance energy for compressible reacting flows.

Chu (1964) derived the energy of a small disturbance in a viscous compressible

flow which included the energy due to entropy fluctuations in addition to the energy

due to pressure and velocity fluctuations. Morfey (1971) derived a measure for the

energy due to small fluctuations with an irrotational base flow. Myers (1991) relaxed the

restrictive assumptions regarding the nature of the base flow and perturbation amplitude

and derived a measure for disturbance energy in a general steady flow. In addition to

the classical acoustic energy, this measure accommodates the energy associated with

fluctuations in vorticity and entropy. In compressible flows, the spatial average of the

rate of pressure related work or compression work does not contribute to the evolution

of energy density (Mack, 1969; Chagelishvili et al., 1994; Farrell and Ioannou, 2000).

Myers’s measure for disturbance energy can further be modified to account for this

conservative nature of compression work (Bakas, 2009).

Nicoud and Poinsot (2005) argued that the Rayleigh criterion gives an incomplete

description of the significant sources of fluctuating energy in a flow with combustion.

They advocate that in thermoacoustic system with flames, entropy waves play a role.

A new stability criterion is obtained which require that the temperature fluctuations

and heat release rate fluctuations are in phase to cause instability. Giaque et al. (2006)

extended the expression for disturbance energy from Myers to incorporate species and

heat release terms in the energy of fluctuations. The energy measure chosen to study
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the non-normal nature of thermoacoustic instability in solid rocket motors included the

energy associated with the entropy fluctuations within the propellant in addition to the

expression for the classical acoustic energy (Mariappan and Sujith, 2010b) following

Chu (1964). Evidently, it’s critical to define the energy in a disturbance depending

on the system under consideration. The source of unsteady heat release rate can be an

electrical heater, a premixed flame, a diffusion flame, etc. in a thermoacoustic system. A

brief overview of the thermoacoustic systems analyzed in the present thesis is elaborated

in the next section.

1.6 Modelling the unsteady heat release rate

In a thermoacoustic system, the source of unsteady heat release rate can add energy to

the acoustic oscillations if the Rayleigh criterion is satisfied. This addition of energy to

the acoustic oscillations is termed as acoustic driving. Therefore, modelling the source

of unsteady heat release rate oscillations plays an important part in obtaining an accurate

model for the thermoacoustic system. The prevalent approach to model the source of

unsteady heat release rate is in terms of its response function to acoustic velocity fluctu-

ations. Transfer functions are obtained for the linear response (Schuller et al., 2003) and

amplitude dependent transfer functions/describing functions (Dowling, 1997)) are ob-

tained to characterize the nonlinear response. Many investigations of ducted premixed

flames which were focused on describing the heat release rate characteristics in terms

of a describing function in the frequency domain are discussed in Section 1.2.

The obtained response function is then used as the source in the acoustic energy

equation to evaluate the stability of the thermoacoustic system. In this frequency do-

main analysis, the transient response of the unsteady heat release rate to acoustic ve-

locity perturbations is not captured. However, the inclusion of the transient response of

unsteady heat release rate can change the prediction of system dynamics significantly.

Therefore, the model of a thermoacoustic system must be capable of capturing transient

effects. Time-domain models for the unsteady heat release rate are capable of captur-

ing transient effects and are used in the present thesis. Time domain approaches model

the heat release rate as delayed responses to acoustic perturbations or using a partial
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differential equation to describe the evolution of the source of unsteady heat release

rate.

1.6.1 Delay model for the unsteady heat release rate

Delay is defined as the time elapsed between a change in the input to the system and its

initial response. True delays arise in a system when the input is introduced (transporta-

tion lag) or when the output is measured (measurement lag) at a distance away from the

system. Apparent delays are caused due to higher-order dynamics whose effects appear

as slow or delayed response of the system to inputs (Astrom and Hagglund, 1995). An

example is the transfer lag which is present when two or more systems are connected in

series (Coughanowr, 1991). Lag in a system is characteristic of the system and is differ-

ent from its inertia (Tangirala, 2011). In order to completely define a system with delay,

an initial time history is also required in addition to an initial condition. The use of a

delay model in thermoacoustic systems was pioneered by Crocco and Cheng (1956).

They used a time lag model to study combustion instability in a liquid propellant rocket

motor. Lieuwen (1998) performed a characteristic time analysis to consider the evolu-

tion of a fluctuation in pressure within a combustor. Schuermans et al. (2004) included

transport lag to rewrite the fuel mass flow fluctuations just upstream of the flame as a

function of fuel mass flow fluctuations at the fuel injector at a previous time instant.

Heckl (1990) used a modified form of King’s Law (King, 1914) to arrive at a cor-

relation between the heat release rate and acoustic velocity fluctuation in a horizontal

Rijke tube. This correlation relates the unsteady heat release rate at time t to the acoustic

velocity fluctuations at the heater location at time (t− τ ). Thus, the correlation contains

an explicit time delay which accounts for thermal inertia in the system. The delay was

determined using the formula given by Lighthill (1954). Heckl’s correlation was used

to construct a model for a horizontal Rijke tube by Balasubramanian and Sujith (2008c).

They investigated the non-normal nature of thermoacoustic interaction in a horizontal

Rijke tube. Nonlinear effects observed in experiments such as sub-critical transition to

instability and dominant mode change during evolution were displayed by this model

Balasubramanian and Sujith (2008c).
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However, a systematic investigation into the stability of thermoacoustic systems for

different configurations is necessary. Determining the stability of the system for differ-

ent configurations by evolving the system from different initial conditions is expensive.

The alternate method of numerical continuation (Allgower and Georg, 2003) can be

employed to obtain the bifurcation plots of a thermoacoustic system efficiently. The

method of numerical continuation has the advantage that once a stationary or periodic

solution has been computed, the dependence of the solution on the variation of a pa-

rameter is obtained efficiently as compared with the directly obtaining the bifurcation

plots from multiple time evolutions.

Sub-critical transition to instability which are observed in experiments, are demon-

strated to occur in the model of a thermoacoustic system. Using this model, we can

determine the regions of stability and the asymptotic state of the system at different

configurations. As the evolution equations for the Rijke tube model contain an explicit

delay term, numerical continuation methods employed for this model must be capable

of handling delay differential equations (Engelborghs and Roose, 1999).

1.6.2 Modelling the evolution of unsteady heat release rate

Time domain models for thermoacoustic systems can include an evolution equation for

the heat release rate dynamics in addition to the acoustic equations for momentum and

energy. Modelling the evolution of heat release rate fluctuations with a separate evo-

lution equation for the flame front has been employed in the study of ducted premixed

flame. Annaswamy et al. (1997) derived a lumped parameter model for the ducted pre-

mixed flame in terms of an evolution equation for the net unsteady heat release rate.

This model includes a single equation for the evolution of heat release rate in addition

to the evolution of acoustic variables and is valid in the linear regime. As the initial

value of the unsteady heat release rate can be supplied as part of the initial condition,

this model can accommodate a non-zero value for the unsteady heat release rate at time

t = 0. This implies that the model is capable of tracking the evolution of an initially

perturbed flame shape. However, the initial condition for the unsteady heat release rate

q̇′0 at time t = 0 can be obtained from a number of different perturbed flame fronts.
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This model cannot distinguish between the different perturbed flame fronts which can

subsequently have different evolutions.

Dowling (1999) used the front-tracking equation to model the evolution of a pre-

mixed flame in the investigation of the thermoacoustic instability in a ducted premixed

flame. The equations for the acoustic field are evolved together with the front track-

ing equation for the flame. The use of an evolution equation to describe the premixed

flame provides for specification of the flame shape and also includes the transient ef-

fects. Therefore in the present investigation, Dowling’s approach is adopted to model a

ducted premixed flame.

Given a periodic solution, the behavior of the system for the variation of system

parameters can be obtained efficiently using the method of numerical continuation. The

next section introduces the method of numerical continuation along with a brief survey

of previous literature on tools from dynamical systems’ theory which can be used to

identify different asymptotic states of a system.

1.7 Determination of the asymptotic state

Numerical continuation (Allgower and Georg, 2003; Ananthkrishnan et al., 2005) is an

alternate approach to obtain bifurcation diagram from a numerical model. This method

aims to solve a set of parameterized nonlinear equations iteratively, given an initial

guess for the state of the system. Solutions which satisfy the set of equations and which

are additionally connected to a given state of the system are tracked for a given smooth

variation of one or more parameters. Bifurcations are identified by including multiple

test functions which change sign at the critical value of the parameter. This method

has the advantage that once a stationary or periodic solution has been computed, the

dependence of the solution on the variation of a parameter is obtained very efficiently

as compared with the other methods described earlier. It can also be used to compute

unstable limit cycles.

Jahnke and Culick (1994) used the continuation method to obtain the amplitudes of

longitudinal acoustic modes in a combustion chamber. They obtained bifurcation plots
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for different number of normal modes of the combustion chamber. Pitchfork bifurca-

tions of the limit cycles leading to new branches of limit cycles and torus bifurcation

leading to quasiperiodic motions were observed in this analysis. Burnley (1996) inves-

tigated the stability of a combustion chamber using numerical continuation and investi-

gated the effect of combustion noise on the stability of the system. Perturbation analyses

were used to investigate the effects of the nonlinear terms in determining the limit cy-

cle behavior. Reduced order models for the combustion chambers have been solved by

the framework of expanding the pressure and velocity fields in terms of modal or basis

functions. Ananthkrishnan et al. (2005), examined the issue of modal truncation and

established the number of modes required to accurately capture the dynamics of the

system.

In numerical continuation, the different types of equations encountered in models

of physical systems require special attention during the analysis stage. As an exam-

ple, delay differential equation must be analyzed using numerical continuation methods

that are capable of handling time delay systems. During bifurcations, evolutions of dy-

namical systems can reach asymptotic states other than a steady state or a limit cycle.

Some of the other asymptotic states that the system could evolve to are: quasiperiodic,

period-2, period-4 and chaotic states.

Culick (1976) derived a model for the nonlinear behavior of acoustic waves in a

combustion chamber which included second-order nonlinearities in gas dynamics. Yang

et al. (1990) extended this model to include third order nonlinearities in acoustic wave

propagation. This model for thermoacoustic instability was used by Lei and Turan

(2009) who investigated the asymptotic states obtained from a one-mode analysis of

the model. Lei and Turan (2009) identified the occurrence of period-2, period-3 and

chaotic oscillations in this system using Poincare sections. Different asymptotic states

were also observed in experiments. Sterling and Zukowski (1991) conducted experi-

ments in a laboratory combustor for the variation of equivalence ratio and mean flow

rate. They obtained asymptotic states in which the amplitude varied from cycle to cy-

cle. However, they do not identify the nature of the asymptotic state. Fichera et al.

(2001) performed experiments in a methane-fuelled laboratory combustor. They calcu-

lated Lyapunov exponents and embedding dimensions to prove the existence of chaos.
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Kabiraj et al. (2010) gradually varied the location of the flame in a ducted premixed

flame system and observed different asymptotic states. Quasiperiodic, period-2, mode-

locked and chaotic oscillations were obtained for different locations of the flame along

the duct. Kabiraj et al. (2010) identified the sequence of different asymptotic states

occurring for the variation of the flame location to identify the Ruelle-Taken’s route to

chaos in a ducted premixed flame system.

Two significant issues arise due to the presence of these different asymptotic states.

The first issue is that, the frequency content of the oscillations during the different

asymptotic states can vary significantly from well defined harmonics to a spectrum with

broadband frequency peaks. Therefore special care must be taken to ensure that the fre-

quencies encountered during these asymptotic states does not interfere with resonant

frequencies of associated structures in the thermoacoustic system. Secondly, instabili-

ties with the above mentioned asymptotic states impose repetitive uneven stresses and

thermal loads upon the structure. These uneven loads can significantly lower the op-

erating life of the system and can even make control of instabilities difficult (Suresh,

1998). Considering the above mentioned reasons, it is important to characterize the

different asymptotic states encountered during instabilities in thermoacoustic systems.

Tools such as frequency analysis using fast Fourier transform (FFT), phase portraits,

Poincare sections and Lyapunov exponents (Strogatz, 2000) can be used to differenti-

ate between the different states and to characterize them. These tools from dynamical

systems’ theory are introduced in detail in Chapter 2.

The next section lists the outstanding issues raised in the previous sections, states

the objective of the present thesis and gives an overview of the different chapters of the

thesis.

1.8 Objectives and overview of the thesis

The primary objective of the present thesis is to use tools from the dynamical systems’

theory to characterize the linear and nonlinear behavior of thermoacoustic systems. In

order to include the effect of transients in the analysis, time domain approaches to mod-
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elling the heat release rate fluctuations are employed. Two models for thermoacoustic

systems are chosen. One where the unsteady heat release rate is modelled in terms of

a time delay model and the other where an evolution equation is written to describe the

heat release rate dynamics. A horizontal Rijke tube model is chosen as an example of

a system with explicit delay. A ducted premixed flame is chosen as an example of a

system with an evolution equation for the heat release rate.

As discussed in Section 1.4, the presence of a source of unsteady heat release rate

causes thermoacoustic systems to be non-normal. It has previously been observed that

evolutions of a horizontal Rijke tube Balasubramanian and Sujith (2008c), a ducted dif-

fusion flame (Balasubramanian and Sujith, 2008a), a vortex-based combustor (Tulsyan

et al., 2009) and solid rocket motor (Mariappan and Sujith, 2010b) are governed by

non-normal linear operators. However, many practical thermoacoustic systems contain

a premixed flame as the source of unsteady heat release rate. Therefore, it is important

to examine the effects of non-normality such as transient growth in ducted premixed

flames and to determine the extent to which these effects are significant in determining

the stability of the system. The dependence of transient growth due to non-normality

on different system parameters must be characterized.

In the case of a Rijke tube model, as defined in Section 1.6.1 the heat release rate

fluctuations are re-written in terms of acoustic velocity fluctuations. Therefore, the state

variables consist of only the acoustic variables. Acoustic energy can therefore be used

to quantify transient growth in the Rijke tube system. However as defined in Section

1.6.2 the model of a ducted premixed flame consists of a premixed flame front which

is discretised into a number of flame elements. As the unsteady heat addition from the

premixed flame acts as a volumetric source, the flame front is modelled as a distribution

of acoustic monopole sources. The state variables of the resulting set of equations for

the ducted premixed flame system consist of variables corresponding to the strength

of monopoles along the flame front in addition to the acoustic variables. The measure

chosen to quantify transient growth in the ducted premixed flame system must include

contributions from the heat release rate fluctuations in addition to the acoustic energy. In

the present thesis, the flame front is modelled as a distribution of monopole sources. The

energy due to monopole sources is added to the acoustic energy, as shown in Section
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4.5.2 to obtain the appropriate measure of disturbance energy for a ducted premixed

flame.

Transition to instability can occur when the linear system becomes unstable or when

a linearly stable system is triggered to instability. Sub-critical transition to instability or

triggering has been traditionally thought to occur due to a finite amplitude perturbation

to the system. A large amplitude initial condition can make the nonlinear effects to

become significant causing the system to become unstable. However, triggering can

occur from a small but finite amplitude initial condition (Zinn and Lieuwen, 2006).

The role of transient growth in the occurrence of sub-critical transition from a small

but finite amplitude initial condition is emphasized by Mariappan et al. (2010). They

perform a non-modal stability analysis of a Rijke tube model and show that smaller

amplitudes of the optimal initial perturbations are sufficient to cause instability than a

purely acoustic initial perturbation. Thermoacoustic interaction in a ducted premixed

flame must also be investigated to determine the role of non-normality in triggering a

system to instability from a small amplitude initial condition.

Safe ranges of operation in gas turbines and rocket motors must be identified in or-

der to avoid instabilities. Bifurcation plots of the system must be obtained to identify

the safe ranges of operation. Obtaining bifurcation plots from time evolutions of the

system is time consuming and expensive. Therefore the alternate method of numeri-

cal continuation is adopted to systematically obtain stability boundaries and bifurcation

plots. The feasibility of numerical continuation method to obtain the bifurcation plots

in thermoacoustic systems is demonstrated in this thesis. The method of numerical con-

tinuation is applied to two models of thermoacoustic systems; a model for a horizontal

Rijke tube and a model for a ducted premixed flame. Thermoacoustic systems can also

evolve to asymptotic states other than a limit cycle. The nature of the asymptotic state

of evolutions in a Rijke tube and ducted premixed flame are investigated using tools

from dynamical systems’ theory.

The overview of the thesis is as follows. Chapter 2 explains the background on

tools from dynamical systems’ theory. Pseudospectra and Kreiss constant can be used

to identify bounds for transient growth in a non-normal system. The method of singular

value decomposition is applied to isolate the most dangerous initial condition or the
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optimal initial condition. Identification of primary and secondary bifurcations en route

to chaos in a dynamical system are explained. The method of numerical continuation

as applied to a system of ordinary and delay differential equations is detailed. Methods

of analysis such as phase plane method, Lyapunov exponent and Poincare maps are

introduced.

Chapter 3 investigates the nonlinear behavior of a horizontal Rijke tube. The method

of numerical continuation is applied to a Rijke tube model described by delay differ-

ential equations. Linear stability bounds and bifurcation plots are obtained. Analyt-

ical methods such as linear stability analysis, the method of multiple scales and the

method of harmonic balance are used to estimate critical points of the bifurcation plot.

Comparison of numerical results with analytical estimates and experimental results are

performed.

The non-normal nature of thermoacoustic interaction in a ducted premixed flame

is analyzed in Chapter 4. Transient growth due to non-normality is quantified with an

appropriate measure of the energy due to fluctuations. The role of transient growth in the

occurrence of triggering from a small but finite amplitude initial condition is explored.

The equation describing the evolution of the premixed flame front, together with the

acoustic equations for momentum and energy reduces the thermoacoustic system to a set

of ordinary differential equations. The method of numerical continuation is employed

to these ordinary differential equations to obtain bifurcation plots for the system.

In both the Chapters 3 and 4, tools from dynamical systems’ theory such as phase

plane analysis, Lyapunov exponents and Poincare maps are employed to ascertain the

asymptotic nature of system evolutions. Conclusions of the investigations and scope of

future work are listed in Chapter 5.
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CHAPTER 2

BACKGROUND ON TOOLS FROM DYNAMICAL

SYSTEMS’ THEORY

Time evolutions of a system give information about the stability of the system and the

resulting asymptotic state. However, this information is specific to the chosen system

parameters and the applied initial condition. Thus, individually obtaining evolutions in

time to characterize the behavior of the system for a range of parameter values and ini-

tial conditions is expensive. A systematic and efficient investigation of both the linear

(Trefethen and Embree, 2005) and nonlinear (Burnley, 1996) behavior of the system

can be performed using tools from dynamical systems’ theory. Dynamical systems

approach aims to model the time evolving dynamics of physical systems. In many ap-

plications, the evolution of the system is independent of time and the system is modeled

as an autonomous dynamical system. These models in general consist of a set of pa-

rameterized nonlinear partial differential equations. These nonlinear partial differential

equations can be converted into a set of ordinary differential equations by the method of

modal expansion (Zinn and Lores, 1971) or by discretising the system in space (Schmid

and Henningson, 2001). The stability of the system and the nature of the asymptotic

state for different configurations can be obtained by investigating the set of ordinary

differential equations.

If χ is the vector of state variables and µ is the vector of system parameters, then

the set of nonlinear ordinary differential equations can be written of the form

dχ

dt
= F (χ, µ) , (2.1)

where F is the nonlinear matrix which is a function of both χ and µ. When the nonlinear

effects in the system are neglected, the set of equations governing the linear evolution

of the system can be written as

dχ

dt
= FLinear(µ)χ . (2.2)



Here, the linear matrix FLinear is purely a function of the system parameters and governs

the evolution of the system only to small perturbations as enforced by the assumption

of linearity. In the present thesis, the operator which governs the linear evolution of

the system is denoted as B such that FLinear = B as given in Eqn. 1.2 of Chapter

1. Information on the behavior of the system can now be systematically obtained by

investigating the nature of the linear operator B and the nonlinear evolution operator F .

2.1 Linear analysis

The asymptotic stability of a system can be determined using classical linear stability

analysis. In classical linear stability analysis, the eigenvalues λi of the linear operator

B are obtained. If the real part of all λi are negative, it indicates that any perturba-

tion to the system will decay asymptotically and the system returns to the unperturbed

state. If an eigenvalue λi has a positive real part z, then any perturbation given to the

system will grow exponentially as ez. In this case, the system does not return to its

unperturbed state and is linearly unstable. Eigenvalues thus indicate the asymptotic sta-

bility of the system, i.e. the stability of the system as t → ∞. However, non-normal

systems can exhibit transient growth even in a linearly stable system (Schmid and Hen-

ningson, 2001). If this transient growth is large enough to cause nonlinear terms to

become significant, the system could become unstable even when all the eigenvalues

indicate stability. Thus, classical linear stability analysis is insufficient to characterize

the behavior of non-normal systems.

The main reason for the classical linear stability analysis to fail is the assumption

that the eigenvectors ei associated with the eigenvalues λi of the system are orthogonal

(normal) to each other. Two consequences of non-normal eigenvectors are explored

in this paragraph. The first effect is the transient growth possible in the magnitude of

resultant even when all the eigenvectors ei are decaying as shown in Fig. 1.4. Secondly,

when a normal system is forced with an input frequency ω, response of the system

occurs. The amount of this resonant amplification is equal to the inverse of the distance

between ω and the nearest eigenvalue of the system in the complex plane. However, in a

non-normal system resonant amplification at a frequency ω can be orders of magnitude
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Figure 2.1: Pseudospectra for (a) normal system given by Bnormal and (b) non-normal
system given by Bnon−normal. Different contours indicate different levels of
perturbation ε.

larger than the inverse of the distance between ω and the nearest eigenvalue (Trefethen

et al., 1993). This implies that resonances in non-normal systems are not determined by

eigenvalues alone (Trefethen and Embree, 2005). Therefore, eigenvalues and classical

linear stability analysis are robust estimators of asymptotic behavior of linear systems

only if the associated eigenvectors are normal to each other.

Resonant amplification of forcing occurs at the frequencies ω which are close to fre-

quencies corresponding to the eigenvalues in normal systems. Thus the eigenvalues or

spectra λi describe the frequencies at which a system governed by the linear operator B

gives maximal resonant response. As mentioned in the previous paragraph, large ampli-

tude resonant amplification can occur even when the forcing frequency is far away from

the eigenvalues in non-normal systems. This phenomenon is called pseudoresonance

(Kato, 2005). Pseudospectra give information on the resonant response of a non-normal

system. The ε-pseudospectrum is defined as the eigenvalues of some perturbed matrix,

B + T . where the perturbed matrix T satisfies the constraint ‖T‖ < ε (Trefethen et al.,

1993). Contours of the ε-pseudospectrum for different values of perturbation ε together

are termed pseudospectra.

Pseudospectra of a normal and non-normal system are shown in Fig. 2.1 which are

obtained using the software ‘eigtool’ (Wright, 2002). The matrices used in the two
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examples are

Bnormal =




−4 0 0

0 −1 + iπ 0

0 0 −1− iπ


 , (2.3)

Bnon−normal =




−4 0 0

200 −1 + iπ 0

180 0 −1− iπ


 . (2.4)

It can be seen from Fig. 2.1 (a) that random perturbations of magnitude ε to the

normal operator results in concentric circles around each eigenvalue. In contrast, the

pseudospectra of the non-normal operator in Fig. 2.1 (b) are highly skewed, even with

the eigenvalues being identical to normal system shown in Fig. 2.1 (a). Skewed contours

in the pseudospectra are produced due to the large sensitivity of the eigenvalues to

perturbations in B. The matrix composed of the eigenvectors ei as its columns is defined

as EV . The sensitivity of the eigenvalues indicate that the condition number of EV is

large. The matrix EV satisfies the relation

‖EV ‖ ‖EV −1‖ >> 1 . (2.5)

This relation identifies B as a matrix which is ‘far from normal’ (Trefethen and Embree,

2005).

When B is far from being normal, the eigenvalues and singular values of B are

widely disparate (Moler, 2008). Singular values of B can have large positive values

even when all eigenvalues have negative real parts. Singular values give the amount

by which an input state χn to the system governed by B is amplified to obtain the

output state χn+1. The action of singular values on perturbations to a linear system

is explained in detail in the next section. The input perturbations which are aligned

along the directions of the first right singular vector V1 undergo maximum amplification.

Thus, the amplification of a disturbance in linear non-normal systems depends on the

distribution of perturbation among the different state variables. Therefore in linear non-
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normal systems, optimal distributions of perturbation in the different state variables

can be identified. Optimal initial condition for a given system governed by B can be

obtained using a singular value decomposition of B (Trefethen et al., 1993) or using the

variational technique of adjoint optimization (Bottaro et al., 2003).

In the next section, we introduce tools such as singular value decomposition (SVD),

Pseudospectra, Pseudospectral abscissa and the Kriess constant (Kreiss, 1971) which

are used to characterize the behavior of non-normal systems, to quantify their transient

growth and to identify the optimal initial condition.

2.2 Tools used in non-modal linear stability analysis

2.2.1 Singular value decomposition

Singular values of matrices play an important role when the matrix is used to transform

an input between two vector spaces (Moler, 2008). Singular values Σ and singular

vectors U and V for a real matrix B can be defined as

BV = UΣ ,

BT U = V ΣT . (2.6)

Here, both U and V are unitary matrices whose columns are the normalized left and

right singular vectors of B respectively. Σ contains the singular values along its diago-

nal. The above relation can be re-written as

B = UΣV T . (2.7)

The expression given in Eqn. 2.7 can be substituted in the evolution equation for a linear

system Eqn. 1.2 to give
dχ

dt
= Bχ = UΣV T χ . (2.8)

Thus the action of the matrix B on a state vector χ can be decomposed into three

separate operations. If χ is the state vector at a time, then the action of V T is to obtain
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the projection of χ along the right singular vectors of B. The action of Σ on V T χ is to

scale the components of the projections by the respective singular values. Finally, the

action of U is to realign the result of the scaling along the output directions.

In the case of a normal matrix, the eigenvalues and the singular values are closely

related (Moler, 2008). Positive eigenvalues with λ1 > 0 are also singular values, i.e.

σi = λi and the corresponding eigenvectors are equal to the singular vectors, i.e. ui =

vi = ei. In the case of a negative eigenvalue with λi < 0, singular value is the modulus

of the eigenvalue such that σi = |λi| and one of the singular vectors is the negative of

the other, i.e. ui = −vi = ei. However in non-normal systems, the eigenvalues and

singular values can be widely separated with large positive singular values occurring

even when all the eigenvalues have negative real parts. This large singular value is

indicative of the large transient growth observed in non-normal systems (Schmid and

Henningson, 2001). The normal convention is to stack the singular values σ of the

matrix Σ in descending order. In this scenario, the square of the first singular value

indicates the largest possible amplification in the system. This amplification will occur

of the input is aligned along the first right singular vector or the first column of V . This

input is therefore the most dangerous initial condition or the optimal initial condition.

Thus singular value decomposition can be used to obtain the optimal initial condition

V1 and the resulting transient growth σ2
1 in the system.

2.2.2 Quantification of transient growth

The matrix B governs the linear evolution of the system as given in Eqn. 1.2. The

solution to this equation when the state of the system at time t = 0 as χ(0) is known

can be written of the form

χ(t) = eBtχ(0) , (2.9)

where the linear operator B is purely a function of the system parameters (Hirsch et al.,

2004). Properties of the linear operator can be used to determine the bounds on the

transient growth due to non-normality. Specifically, the nature of ‖eBt‖ and its variation

with time gives information on the possible transient growth during evolution. This

transient growth can be quantified using the largest singular value of B as explained
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Figure 2.2: Evolution of a non-normal system from (a) an arbitrary initial condition and
(b) the optimal initial condition for a given configuration.

in the previous section. Square of the largest singular value σ1 indicates the transient

amplification in the system for the optimal initial condition given by the first column

of V . Amplification of energy associated with the perturbations at finite time t can be

quantified by the ratio of the square of the norm of the state vector at time t to the square

of the norm of the state vector at time t = 0 (Schmid and Henningson, 2001).

The evolution of a non-normal system depends on the distribution of perturbation

among the different state variables. This is evident from the Fig. 2.2 which shows the

evolution of a system from two different initial conditions. In Fig. 2.2 (a), the system

displays no transient amplification for evolution from an arbitrary initial condition and

is seen to monotonically decay. Evolution from the optimal initial condition shown in

Fig. 2.2 (b) displays transient amplification which reaches a maximum before decaying

asymptotically. Evolution from the optimal initial condition ensures that the amplifica-

tion of perturbation is maximized over all possible initial conditions. Further, transient

amplification of the perturbation is maximized over time by choosing the maximum

value of the evolution. Transient amplification maximized over all possible initial con-

ditions and time is termed as the maximum growth factor Gmax and the time at which

this occurs is termed as tmax (Schmid and Henningson, 2001).

Gmax = max
t,χ(0)

s
‖χ(t)‖2

‖χ(0)‖2
, . (2.10)

Singular value decomposition can be used to identify the optimal initial condition

and Gmax as described in the previous subsection. The square of the largest singular

value σ2
1 gives the value of Gmax. Transient amplification is a function of the linear
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operator B which in turn is a function of the system parameters. Therefore, the value

of Gmax changes with system configuration. Variations of Gmax and tmax with system

parameters can be used to identify system configuration when the non-normal effects

are pronounced. Both the time taken for maximum growth tmax and bounds on the

values of Gmax can be determined from the pseudospectra of B which is given in detail

in the next subsection.

2.2.3 Pseudospectra and bounds for transient growth

The ε-pseudospectrum for the linear operator B is a set of points in the complex plane

which are the eigenvalues of a perturbed matrix (B + T ), such that the random pertur-

bation T to the operator satisfies the condition ‖T‖ < ε (Trefethen and Embree, 2005).

Pseudospectra are calculated for different values of perturbation amplitude ε and are

plotted along with the eigenvalues of B in a single plot to give the pseudospectra of

B. A typical log plot of transient growth in the evolution operator ‖etB‖ is shown in

Fig. 2.3 adapted from Trefethen and Embree (2005). The evolution is seen to increase

from its initial value transiently, reach a maximum at finite time and decay asymp-

totically. Behavior of the evolution at different instances of time can be obtained by

different measures from the corresponding pseudospectra. Asymptotic behavior of the

evolution is bound by the spectral abscissa of B which is given as

lim
t→∞

t−1 log ‖etB‖ = α(B) . (2.11)

Spectral abscissa is given by the real part of the right most eigenvalue of B in the

pseudospectra. This value determines the asymptotic growth rate of the evolution. The

initial growth rate of the evolution at time t = 0 is given by the numerical abscissa

ω(B) which is defined as

lim
t=0

t−1‖etB‖ = ω(B) . (2.12)

Both the spectral and numerical abscissa describe the evolution of the system at t →∞
and t = 0 respectively. However, it the behavior of the system at finite times that is

of interest. Finite time behavior of a non-normal system can be obtained from pseu-

dospectra.
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Figure 2.3: Log plot of a typical evolution of the matrix exponential ‖etB‖ for a non-
normal system with regions of applicability of numerical abscissa ω(B),
pseudospectral abscissa αε(B) and spectral abscissa α(B) which bound the
evolution at different times.

An ε-pseudospectrum is defined as the eigenvalues of a perturbed linear matrix B +

T such that ‖T‖ < ε. Pseudospectral abscissa αε gives the location of the point on the

ε-pseudospectra which crosses the real axis at the largest value. If the value of αε is

positive, such that (αε(B)/ε) > 1, then transient growth can occur depending on the

initial condition. The ratio of (αε(B)/ε) maximized over all ε gives the minimum value

of transient growth possible. A lower bound on the magnitude of the transient growth

can be given in terms of the Kreiss constant κ(B) from the Kreiss matrix theorem as

given below (Kreiss, 1971):

sup
t≥0

‖etB‖ ≥ sup
ε>0

αε(B)

ε
= κ(B) . (2.13)

The upper bound on transient growth ϕ(B) for a matrix of dimension (2N + P ) is also

given by the Kreiss matrix theorem in terms of κ(B) as below:

‖etB‖ ≤ e(2N + P )κ(B) = ϕ(B) . (2.14)

When the pseudospectral abscissa σε is the ε-pseudoeigenvalue of the system with the

largest real part, the system experiences a transient growth of the order of over a time

span 1/σε (Trefethen and Embree, 2005). Thus, pseudospectra can also give an estimate

of the time over which transient growth occurs tmax.

As explained in detail in Section 1.4, thermoacoustic systems are non-normal. The

above mentioned tools such as pseudospectra, pseudospectral abscissa and Kreiss con-

37



Figure 2.4: Typical route to Chaos.

stant can be used to estimate Gmax and the time over which transient growth occurs tmax

in a non-normal system. These tools have been used in quantify the transient growth

in a ducted premixed flame system in Chapter 4. However, the equations governing the

evolution of thermoacoustic systems are in general nonlinear. Therefore investigation

of thermoacoustic instability must include the effects of the nonlinear terms. In the rest

of this chapter, nonlinear parametric equations are considered and methods and tools

used in their analysis are introduced. Using these methods and tools from dynamical

systems’ theory, bifurcation plots can be obtained efficiently and the asymptotic nature

of evolutions can be classified.

2.3 Nonlinear analysis: a typical route map to chaos

Models of thermoacoustic systems are generally a set of nonlinear partial differential

equations. The presence or absence of an explicit time delay in the model converts

the partial differential equations into a set of delay differential equations (DDE’s) or

ordinary differential equations (ODE’s) respectively. These parameterized nonlinear

set of equations can have multiple solutions for a given system configuration. Small

changes in a system parameter can produce qualitative changes in the solution, i.e.

bifurcation. A visual representation of all possible solutions along with their stability

information plotted as a function of one or more system parameters is a bifurcation plot.

Bifurcations occur as qualitative changes in the nature of the asymptotic state of
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Figure 2.5: Types of primary bifurcation. (a) Static bifurcation (b) Dynamic/Hopf bi-
furcation.

system for smooth variations of a bifurcation parameter. This section discusses a typical

scenario when the asymptotic state of a system progressively varies between a steady

state when the system is stable and a chaotic orbit. A typical route map to chaos is

shown in Fig. 2.4 which is adapted from Ajjarapu (2006). The simplest solution to a

set of nonlinear parameterized equations is obtained when the system reaches a steady

state. No oscillations occur in the asymptotic state for the chosen parameter values at

the steady state. Primary bifurcation occurs when this steady state loses stability. Loss

of stability at the primary bifurcation is identified by the crossing of eigenvalues from

the left to the right half of the complex plane. This can occur in one of two ways as

shown in Fig. 2.5.

When a real dominant eigenvalue crosses the imaginary axis through the origin as

shown in Fig. 2.5 (a), no oscillations are introduced and therefore the bifurcation is

called static bifurcation. A new steady state is introduced due to static bifurcation. Static

bifurcation can be classified as one of three types - saddle node, pitchfork and trans-

critical (Baker and Gollub, 1990). When a pair of complex conjugate eigenvalues cross

the imaginary axis, as shown in Fig. 2.5 (b), a frequency component is introduced in the

solution. This bifurcation is called a dynamic bifurcation or a Hopf bifurcation and the

resulting state after bifurcation is a periodic solution (Baker and Gollub, 1990). If the

primary bifurcation is static, it can give rise to new steady states before a dynamic/Hopf

bifurcation occurs in the system.

Based on the stability of the periodic solutions, Hopf bifurcation can be classified

into a sub-critical or super-critical Hopf bifurcation as shown in Fig. 2.6. If the periodic
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Figure 2.6: Bifurcation behavior of a Measure for the variation of a Parameter near
a (a) Sub-critical and (b) Super-critical Hopf bifurcation. • indicate stable
solutions and ◦ indicate unstable solutions.

solutions near the loss of static stability are stable, the Hopf bifurcation is super-critical.

Sub-critical Hopf bifurcations are obtained when the periodic solutions near the loss of

static stability are unstable. These periodic solutions of a system can be strobed at

their principal period to obtain the corresponding maps. The matrix which advances the

system over one period is called the monodromy matrix (Hillborn, 1994). In Fig. 2.7,

the eigenvalues of the monodromy matrix, i.e. Floquet multipliers, are plotted in the

complex plane. One pair of complex Floquet multipliers always lie on the unit circle

corresponding to the periodicity of the solution.

When the periodic solution obtained after a Hopf bifurcation loses/gains stability,

secondary bifurcation occurs. Secondary bifurcation can occur in one of three ways as

shown in Fig. 2.7. The unit circle defines the bounds of stability for periodic solutions.

When a real Floquet multiplier crosses the unit circle along the positive real axis, a

trans-critical or saddle node bifurcation of the periodic solution occurs. At a saddle node

bifurcation, the stability of the periodic solution is changed and a fold point is obtained

in the bifurcation plot. Therefore, this bifurcation is also called fold bifurcation.

Period doubling bifurcations occur when a real Floquet multiplier crosses the unit

circle along the negative real axis, i.e. the Floquet multiplier is −1. As the name

implies, sub-harmonic frequencies are introduced in the evolution and the system is

seen to alternatively oscillate between two extrema. When a pair of complex Floquet

multipliers cross the unit circle, a new frequency is introduced which is incommensurate

with the initial periodicity. This causes a torus bifurcation which leads to quasiperiodic

behavior of the time evolution.
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Figure 2.7: Types of secondary bifurcation. (a) Trans-critical/fold bifurcation (b)
Period-doubling bifurcation (c) Torus bifurcation.

The route that a system follows to chaos after secondary bifurcation is specific to

that particular system. Even in the same system, different routes to chaos such as the

period doubling route, Ruelle-Taken’s route and intermittency can occur for different

system configurations. Thus the route between secondary bifurcation and chaos is not

fixed which is indicated by the dashed lines in Fig. 2.4. The approach of obtaining bi-

furcation plots by systematic variation of parameter and tracking direct time integration

is computationally expensive. Alternatively, the numerical continuation method (Allgo-

wer and Georg, 2003; Ananthkrishnan et al., 2005) is an approach to obtain bifurcation

plot of a model efficiently. The next section introduces some of the terminologies used

in the method of numerical continuation.

2.4 Terminologies used in numerical continuation

An efficient method to obtain the bifurcation plot of a system and to locate the pri-

mary and secondary bifurcations is the method of numerical continuation (Allgower

and Georg, 2003). This method aims to solve a set of parameterized nonlinear equa-

tions iteratively, given an initial guess for the state of the system. If χ is the vector of
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state variables and µ is the vector of parameters, the deterministic autonomous dynam-

ical system is given as
dχ

dt
= F (χ, µ) , (2.15)

where F can be a nonlinear function of the parameters and state. Equation 2.1 defines

the evolution of a continuous time system and is called the flow of the system. A

discrete time equivalent of the flow is a map which describes the evolution of the system

at discrete points in time as

χi+1 = M(χi, µ) . (2.16)

Any state (χ0, µ0) such that it satisfies the equation of the system is called a solution

of a system. The steady state is one of the possible solutions to the dynamical system.

The steady state is obtained when F (χ0, µ0) = 0, i.e. by setting the time derivatives

to zero in 2.1. A set of solutions (χ(s), µ(s)) to above mentioned dynamical system,

which are connected to a solution (χ0, µ0) are collectively called the solution compo-

nent Γ(χ0, µ0).

The solution component is in general a branched curve and is comprised of regular

and singular points. The solution component is an isolated curve near a regular point on

it. The Jacobian which is defined as the matrix of all the first order partial derivatives

of F (χ, µ) has full rank at regular points. The solution component is branched at the

singular points which indicates a bifurcation. The Jacobian calculated at these singular

points is not full rank. In addition to the equation of flow (Eqn. 2.1), periodic solutions

of a system obey the constraint that χ(t+T ) = χ(t), where T is the principal time period

of the oscillation and Φ(T ) is the monodromy matrix (Hillborn, 1994). Eigenvalues of

the monodromy matrix are the Floquet multipliers Λi which can be used to identify the

stability of the periodic solution and to locate secondary bifurcations (Seydel, 1988).

2.5 Numerical continuation

In the method of numerical continuation, solutions which satisfy the set of equations

and are additionally connected to a given state of the system are tracked for a given

smooth variation of one or more parameters (Allgower and Georg, 2003). Bifurcations
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are identified by including multiple test functions which change sign at the critical value

of the parameter. This method has the advantage that once a stationary or periodic solu-

tion has been computed, the dependence of the solution on the variation of a parameter

is obtained efficiently as compared with the direct time integration technique described

earlier. It can also be used to compute unstable limit cycles. Continuation methods

compute steady states and periodic solutions as a function of a free parameter. Contin-

uation algorithms take as input the set of nonlinear equations and an initial solution to

produce a set of points on the solution component (Seydel, 1988). Thus, continuation

methods convert the problem of finding solutions for a set of nonlinear parameterized

equations to the problem of tracking a curve Γ(χ0, µ0) subject to the constraints given

by Eqn. 2.1.

2.5.1 Steady state

Steady states are obtained by satisfying the condition that the derivative of the flow is

zero as

χ̇ = F (χ, µ) = 0 . (2.17)

For a set of nonlinear parameterized equations, many steady states can exist. It is not

easy to locate all the zeros of the function F (χ, µ). However in a thermoacoustic sys-

tem, the trivial steady state indicates the unperturbed mean configuration, and hence, is

always a physically realizable state. Stability of a steady state can be determined by the

eigenvalues of the Jacobian matrix of the corresponding linearized system as stated by

the Hartman-Groβman linearization theorem (Crawford, 1991). If χ = χ̄+δχ is a state

near the steady state χ̄, the linearized system can be written as

δχ̇ = Fχ(χ̄, µ)δχ . (2.18)

Here Fχ(χ̄, µ) is the Jacobian matrix whose eigenvalues λi determine the stability of

the steady state χ̄. If the real parts of all λi are less than zero, then the system is linearly

stable.

Given two nearby steady states (χ0, µ0) and (χ0 + δχ, µ0 + δµ), the solution com-
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Figure 2.8: Continuation of a solution component by the arc-length continuation
method.

ponent Γ(χ0, µ0) can be obtained by numerical continuation. This method relies on the

implicit function theorem which states that, for a continuously differentiable system,

the steady states are continuous functions of the parameters of the system (Crawford,

1991). Distance between two solutions of the system along the solution component

is called the arc-length (Rabinowitz, 1977). Keller proposed that the projection of the

arclength along the tangent of the solution component, called as the pseudo-arclength

s to be the ideal way to parameterize a curve (Rabinowitz, 1977). In pseudo-arclength

continuation, we consider χ and µ to be functions of an unknown parameter s, which is

the pseudo-arclength. The equation to be solved thus becomes

F (χ(s), µ(s)) = 0 (2.19)

Having introduced an unknown variable s, we close the above set of equations with the

additional constraint that the next point in the solution component lies within a distance

specified by the arc-length s between the previous two known solutions given by the

circle in Fig. 2.8. This condition takes the form

(
dχ

dt

)2

+

(
dµ

dt

)2

= 1 . (2.20)

We calculate the derivatives dχ/ds and dµ/ds at every step and use it to predict

a new steady state along the solution component. Iterations with Newton’s method

(Press, 1999) then provide a converged solution for a new steady state along the solution
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component.

2.5.2 Periodic solution

Periodic solutions satisfy the constraint χ(t) = χ(t + T ) in addition to satisfying the

equation for flow of the system. Strobing the periodic solution at its principal time

period T can produce a discrete time series of states as

χ(t + T ) = FT (χ(t), µ) . (2.21)

The above equation for corresponding instances in a periodic solution is the same as

the equation of a map given in Eqn. 2.16 and FT is the monodromy matrix (Hillborn,

1994). The stability of the periodic solution is determined by the eigenvalues of the

monodromy matrix known as Floquet multipliers (Seydel, 1988). When two nearby

periodic solutions are obtained from time marching technique, the solution component

of the periodic solutions can be continued by considering the periodic solutions of a flow

as the steady states of the corresponding map as explained in the previous subsection.

Numerical continuation is a very efficient method to obtain bifurcation plots for

reduced order models of physical systems. However it should be noted that the different

types of equations encountered in models of physical systems require special attention

during the analysis stage. For example, delay differential equations encountered in

models with an explicit time delay must be continued with methods which can handle

the time delay. The numerical continuation package used in Chapter 3 called DDE-

BIFTOOL (Engelborghs et al., 2002) is capable of handling delay differential equations.

2.6 Tools for nonlinear time series analysis

Evolutions of a system can be analyzed to classify the nature of their asymptotic state.

This approach is very useful in two scenarios. The first scenario occurs when the system

under consideration lies beyond the range of secondary bifurcation. It has been noted at
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Figure 2.9: Frequency spectrum in time evolution during a (a) Limit cycle (b) Period-2
(c) Quasiperiodic and (d) Chaotic oscillation.

the end of Section 2.3 that the routes to chaos beyond secondary bifurcations are specific

to the system under consideration. The particular route to chaos in a given system is

identified by performing time series analysis on the asymptotic state of the evolution at

different parameter values. The second scenario is the analysis of experimental data.

Complete information of the state is not available in experiments and often only a few

system variables can be measured. Even under these restrictions, time series analysis is

capable of characterising the nature of the asymptotic state of the system (Abarbanel,

1996).

A common tool used in time series analysis to identify the asymptotic state of the

system is Fast Fourier Transform (FFT). This method identifies the frequency content

of a given evolution. Figure 2.9 (a) shows the frequency content during a limit cy-

cle with a dominant peak at the frequency corresponding to the unstable eigenmode.

Period 2 oscillations exhibit peak at a sub-harmonic frequency as shown in Fig. 2.9

(b). Quasiperiodic oscillations display incommensurate frequencies in Fig. 2.9 (c) while

chaotic trajectories give rise to a nearly continuous spectrum in FFT as shown in Fig. 2.9

(d).

The Lyapunov exponent of a dynamical system characterizes the rate at which two

46



Figure 2.10: Phase portraits (a) Limit cycle (b) Quasi-periodic orbit.

nearby trajectories separate (Strogatz, 2000). Predictability of a nearby trajectory is in-

creased if the Lyapunov exponent is negative. This indicates that the two trajectories are

evolving towards a common attractor. When two trajectories evolve to the same asymp-

totic state, the distance between the two trajectories vanishes. This is observed when

two trajectories evolve to the same limit cycle as shown in Fig. 4.15. The Lyapunov

exponent asymptotically tends to the value of zero in this case. Conversely, a positive

value for the Lyapunov exponent indicates that the two nearby trajectories are evolv-

ing exponentially away from one another. Therefore a positive value for the Lyapunov

exponent is indicative of a chaotic system.

Given a system with N state variables, an N -dimensional phase space can be ob-

tained where each possible state of the system is a point. A visual display of a trajectory

in phase space is called as a phase portrait (Crawford, 1991; Strogatz, 2000). Phase por-

traits are very useful in characterizing time evolutions as the phase portrait of a limit

cycle forms a closed orbit as shown in Fig. 2.10 (a). Phase portraits of quasiperiodic

orbits span the surface of a torus as shown in the 3-dimensional plot in Fig. 2.10 (b).

Arrows in the phase portraits indicate the direction of time.

A section of a phase portrait by a transversal plane of N − 1 dimensions gives

a Poincare map of the trajectory (Hillborn, 1994). The transversality of the Poincaré

section implies that the trajectories of the system flow perpendicular to it in the phase

space. In this thesis, the two-sided Poincare map of the time evolutions are plotted in

Figs. 2.11 (a − d). The Poincare map or the first return map of a limit cycle shows

two distinct points in Fig. 2.11 (a) while that of a period-2 trajectory shows 4 points in

Fig. 2.11 (b). The Poincare map of a quasiperiodic trajectory in Fig. 2.11 (c) shows that

successive intersections of the trajectory with the Poincare section forms a set of points
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Figure 2.11: Poincare maps for different asymptotic states (a) Limit cycle (b) Period 2
(c) Quasiperiodic (d) Chaotic orbits.

on the surface of a torus. Chaotic evolutions of the system display a set of points in the

Poincare map as shown in Fig. 2.11 (d). (Strogatz, 2000).

The above mentioned tools from dynamical systems’ theory for nonlinear time se-

ries analysis are employed in the present thesis to characterize the asymptotic state of

thermoacoustic systems. The method of numerical continuation has been applied to

obtain the bifurcation plots for the variation of system parameters in a horizontal Rijke

tube in Chapter 3 and a ducted premixed flame in Chapter 4. Fourier transforms and

Lyapunov exponents have been calculated while phase portraits and Poincare sections

have been plotted to classify the evolutions according to their asymptotic state.
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CHAPTER 3

BIFURCATION ANALYSIS OF THERMOACOUSTIC

INSTABILITY IN A HORIZONTAL RIJKE TUBE

3.1 Thermoacoustic instability in a Rijke tube

Rijke tube is a simple thermoacoustic device, which has the essential physics of ther-

moacoustic interaction. It consists of a duct which is open at both ends and a heat source

(in the present case, an electrical heater) positioned at some axial location within it.

Self sustained thermoacoustic oscillations are observed in a Rijke tube when the heater

is positioned at certain axial locations of the tube and beyond some threshold power

level (Rijke, 1859). In a vertical Rijke tube, the power level determines the tempera-

ture at the surface of the electrical heater and thereby regulates the mean flow through

the tube which is set up due to natural convection. In order to side-step the difficulty

of modeling natural convection in the vertical arrangement, a horizontal Rijke tube is

considered. The mean flow is maintained at a desired flow rate using a blower (Katto

and Sajiki, 1977; Heckl, 1990; Matveev, 2003b).

In a linearly unstable configuration, the oscillations grow exponentially from small

amplitudes and eventually reach a limit cycle. A linearly stable system can exhibit sub-

critical transition to instability, depending on the amplitude of the initial condition and

is termed as triggering (Wicker et al., 1996). The sub-critical transition to instability is

manifested as hysteretic behavior (Matveev, 2003b) in experiments. Estimation of the

amplitude of acoustic oscillations during limit cycle is important from the design point

of view for gas turbines (Zinn and Lieuwen, 2006). As linear stability analysis cannot

predict the limit cycle characteristics, nonlinear stability analysis or bifurcation analysis

of thermoacoustic instability is necessary. For this, the nonlinearity in the heat release

rate response of the heater has to be included (Kwon and Lee, 1985) in the analysis.

The heat source was also modelled as a heated flat plate (Hantschk and Vortmeyer,



1999) or as a circular cylinder (Mariappan and Sujith, 2010a) using computational fluid

dynamic (CFD) techniques. The transfer functions obtained from CFD simulations

of flow around heated cylinders (Kwon and Lee, 1985) have been used to study the

bifurcation plot of a Rijke tube (Matveev, 2003b).

In most cases, solving the governing equations to obtain the unsteady heat transfer

from the heater is computationally expensive. For those cases, a low order model is

used to simulate the nonlinear response of the heater. Heckl (1990) used a modified

form of King’s Law (King, 1914) to arrive at a correlation between the heat release rate

and acoustic velocity fluctuation in a horizontal Rijke tube. This correlation relates the

unsteady heat release rate at time t to the acoustic velocity fluctuations at the heater

location at time (t − τ ). The correlation contains an explicit time delay which was

determined using the formula given by Lighthill (1954). Heckl’s correlation was used

to construct a model for a horizontal Rijke tube by Balasubramanian and Sujith (2008c).

They observed that this low order model retained diverse dynamical behaviors such as

the attainment of a limit cycle and sub-critical transition to instability. In this chapter,

analytical and numerical results from the the above mentioned low order model are

compared with experimental results obtained by Matveev and Culick (2003) and Song

et al. (2006).

The approach of systematically varying a parameter and tracking the evolution of

the system for different initial conditions can provide the bifurcation plot Mariappan

and Sujith (2010a). However, this method of obtaining the bifurcation plot is computa-

tionally intensive. Moreover, the basins of attraction obtained for the limit cycle and the

steady state remain specific to the type of initial condition applied, making it not suited

for systems which exhibit triggered instability (Ananthkrishnan et al., 2005). Therefore,

alternate methods of obtaining the bifurcation plots efficiently must be identified.

Triggered instability which is exhibited as hysteresis, is an indication of sub-critical

Hopf bifurcation followed by a fold bifurcation. Critical points on the hysteresis curve

can be obtained by analytical methods. Classical linear stability analysis based on

eigenvalues can be employed to obtain the Hopf points or the bounds of linear sta-

bility. Analytically, the method of multiple scales can provide information about the

nature of the Hopf bifurcation (Nayfeh and Balachandran, 1990) and the method of har-
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monic balancing (Vidyasagar, 1993) can locate the fold points in a hysteretic system.

The method of multiple scales was applied to a model for feedback control system to

obtain the amplitude modulation equations by Nayfeh and Balachandran (1995). It was

extended to systems with explicit delay by Das and Chatterjee (2002). Saha et al. (2009)

obtain the amplitude and stability of limit cycles near the Hopf bifurcation point from

the equivalent slow-flow equations to be derived in Section 3.4.2. The method of har-

monic balance converts the problem of determining a periodic solution of a system into

finding the roots of an algebraic equation (Nayfeh and Balachandran, 1990, 1995). Fold

points of a hysteresis curve can be determined using the method of harmonic balance.

Numerical continuation method (Allgower and Georg, 2003; Ananthkrishnan et al.,

2005) is an approach to obtain bifurcation plot of a model. This method aims to solve a

set of parameterized nonlinear equations iteratively given an initial guess for the state of

the system. Solutions which satisfy the set of equations and are additionally connected

to a given state of the system are tracked for a given smooth variation of one or more pa-

rameters. Bifurcations are identified by including multiple test functions which change

sign at the critical value of the parameter. This method has the advantage that once a

stationary or periodic solution has been computed, the dependence of the solution on

the variation of a parameter is obtained efficiently as compared with the direct time

integration technique described earlier. It can also be used to compute unstable limit

cycles. In numerical continuation, different types of equations encountered in models

of physical systems require special attention during analysis. As an example, numerical

continuation methods used for models containing delay differential equations must be

capable of handling time delay systems. This is essential in the present investigation as

the low order model used for the Rijke tube contains an explicit delay term.

Numerical continuation methods for delay systems have been developed by Engel-

borghs and Roose (1999). Their software called DDE-BIFTOOL, has been used to

obtain the bifurcation results in the present chapter. The rest of this paragraph details

the numerical schemes used in the continuation of delay differential equations. In DDE-

BIFTOOL (Engelborghs and Roose, 1999) the steady state of the system is determined

iteratively using a Newton-Raphson scheme. The obtained steady state is then used

to continue the solution curve for variations of one or more chosen parameters of the
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system. A system of delay differential equations has an infinite number of eigenvalues

associated with the steady state which govern its stability. The dominant eigenvalues

determined by a cut-off based on the value of their real part are evaluated numerically

and the Hopf bifurcation points are detected. To obtain the periodic solutions of the

system, periodicity of the evolution is enforced using an orthogonal collocation method

(Engelborghs et al., 2002). Branches of periodic solutions with variations of relevant

parameters are obtained analogous to the branches of the fixed points and their stability

is estimated by calculating the dominant Floquet multipliers.

In the present investigation, the following system parameters are varied; the non-

dimensional heater power K, location of heater yf , damping coefficient c1 and the time

lag τ . The rest of the chapter is organized as follows. Section 3.2 describes the low

order model for the Rijke tube. Analysis of the bifurcation and stability plots are ex-

plained in Section 3.3. Section 3.4 lists the derivation used in the analytical methods.

Analytical methods are used to locate the Hopf point, the nature of the Hopf bifurcation

and to locate the fold point. The results of bifurcation analysis from numerical contin-

uation for various parameters are listed in Section 3.5. Observed interesting dynamical

behavior such as quasi-periodicity, period-doubling route to chaos and co-existing mul-

tiple attractors are compiled in Section 3.6. Comparison of analytical estimates for the

bifurcation plot with numerical results is performed in Section 3.7. Section 3.8 deals

with the comparison of numerical results with experimental data. The results of the

analysis are summarized in Section 3.9.

3.2 Model for Rijke tube

The Rijke tube model used in the present chapter closely follows Balasubramanian and

Sujith (2008c) and is for the geometry shown in Fig. 3.1. This model is governed by

the non-dimensional linearized momentum and energy equations for the acoustic field

as given below in Eqns. (3.1) and (3.2). The scales for non-dimensionalisation are as

given in expression (3.3).

γM
∂u′

∂t
+

∂p′

∂y
= 0 , (3.1)
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Figure 3.1: Configuration of a horizontal Rijke tube with an electric heater as source.

∂p′

∂t
+ γM

∂u′

∂y
+ ζp′ = (γ − 1)Q̇′(t)δ(y − yf ) . (3.2)

y =
ỹ

l
; t =

c0

l
t̃; u′ =

ũ′

u0

; p′ =
p̃′

p̄
; M =

u0

c0

. (3.3)

In this model, y is the distance along the axial direction, l is the length of the duct and

t is time. The flow has a steady state velocity u0, pressure p̄ and temperature T̄ as

shown in the Fig. 3.1, with u′ as acoustic velocity and p′ as acoustic pressure. Here, γ

is the ratio of specific heats of the medium, c0 is the speed of sound and M is the Mach

number of the mean flow. Additionally, ζ is the damping coefficient and Q̇′ is the heat

release rate fluctuations per unit area due to the electrical heater. Quantities with tilde

are dimensional and those without tilde are non-dimensional.

The response of the heat transfer from the wire filament to acoustic velocity fluc-

tuations is quantified using the correlation given by Heckl (1990). This correlation

quantifies the quasi-steady heat transfer from a heated cylinder to the flow around it

(King, 1914). King’s law predicts nonlinear relation between the unsteady heat release

rate and the acoustic velocity perturbations u′ only for |u′| greater than the mean flow

velocity ū. However, experiments performed by Heckl (1990) indicated that nonlinear

effects become significant when |u′| > ū/3 which is included in the heat release rate

correlation as a factor 1/3. A time lag is introduced in the correlation in order to in-

clude for the thermal inertia of the heat transfer (Heckl, 1990). The heat release rate

fluctuations can then be rewritten in terms of the acoustic velocity fluctuations as given
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in Eqn. (3.4).

Q̇′(t) =
2Lw(Tw − T̄ )

S
√

3c0p̄

√
πλCV u0ρ̄lc

[√∣∣∣∣
1

3
+ u′f (t− τ)

∣∣∣∣−
√

1

3

]
. (3.4)

The energy equation can be modified as given below by including the correlation for

heat release rate fluctuations:

∂p′

∂t
+ γM

∂u′

∂y
+ ζp′ = (γ − 1)

(
2Lw(Tw − T̄ )

S
√

3c0p̄

)

√
πλCV u0ρ̄lc

[√∣∣∣∣
1

3
+ u′f (t− τ)

∣∣∣∣−
√

1

3

]
δ(y − yf ) ,

(3.5)

where lc, Lw and Tw are the radius, length and temperature of the wire respectively, S

is the cross sectional area, ρ̄ is the mean density, λ is the thermal conductivity and CV

is the specific heat at constant volume of the medium within the duct.

The non-dimensional partial differential equations Eqn. (3.1) and Eqn. (3.5) can be

reduced to a set of ordinary differential equations by expanding the acoustic variables

in terms of basis functions using the Galerkin technique (Zinn and Lores, 1971). The

Galerkin basis functions chosen here are the natural acoustic modes of the duct in the

absence of a heater. The duct modes in the absence of the heater have non-dimensional

frequencies f = 0.5j and time periods T = 2/j for j = 1 to N . In the following

expressions kj = jπ refers to the non-dimensional wave number and ωj = jπ refers

to the non-dimensional angular frequency of the jth duct mode. It should be noted that

with the present scales of non-dimensionalisation, the non-dimensional wave number

kj and the non-dimensional angular frequency ωj have identical values.

u′ =
N∑

j=1

cos (kjy) ηj (t) , (3.6)

p′ = γM

N∑
j=1

sin (kjy)

(−η̇j(t)

jπ

)
. (3.7)
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dηj

dt
+ kj

(−η̇j

jπ

)
= 0 , (3.8)

d

dt

(−η̇j

jπ

)
+2ζjωj

(−η̇j

jπ

)
−kjηj = K

[√∣∣∣∣
1

3
+ u′f (t− τ)

∣∣∣∣−
√

1

3

]
sin(kjyf ) . (3.9)

Here, ζ = 2ωjζj is the expression for frequency dependent damping where ζj is given

by Sterling and Zukowski (1991); Matveev (2003a) as shown in Eqn. (3.10) and c1 and

c2 are the damping coefficients which can be varied and which control the amount of

damping in the system.

ζj =
1

2π

(
c1

ωj

ω1

+ c2

√
ω1

ωj

)
, (3.10)

The resulting set of equations as given in Eqns. (3.8) and (3.9) are evolved in time.

Here, the expression for the non-dimensional heater power (K) is given by,

K =
4(γ − 1)Lw

γMc0p̄S
√

3
(Tw − T̄ )

√
πλCV u0ρ̄lc . (3.11)

The equations can be simplified by expanding the term under the square root in Eqn. (3.9)

under the assumptions of small acoustic velocity at the flame
(
u′f

)
and small time lag

(τ). The resulting equation, valid in the limit of small time lag, is written as given below

in Eqn. (3.12).

d

dt

(−η̇j

jπ

)
+ 2ζjωj

(−η̇j

jπ

)
− kjηj

= K

√
3

2
sin(kjyf )

N∑
i=1

cos (kiyf )

[
ηi + τ

(−η̇i

iπ

)]
. (3.12)

Considering a single mode analysis, the Eqns. (3.8) and (3.9) can be further modified

as given below where η and (−η̇/π) are the temporal coefficients of the first acoustic

velocity and acoustic pressure mode respectively.

d

dt
η + π

(−η̇

π

)
= 0 , (3.13)
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d

dt

(−η̇

π

)
+ 2ζ1π

(−η̇

π

)
− πη = K

[√∣∣∣∣
1

3
+ cos(πyf )η(t− τ)

∣∣∣∣−
√

1

3

]
sin(πyf ) .

(3.14)

Substituting Eqn. (3.13) in Eqn. (3.14), a second order delay differential equation is

obtained as,

η̈ + 2ζ1πη̇ + π2η + ∆

[
η(t− τ)− 3

4
cos(πyf )η(t− τ)2 +

9

8
cos(πyf )

2η(t− τ)3

]
= 0 .

(3.15)

where ∆ =
√

3Kπsin(2πyf )/4.

Equations (3.13), (3.14) and (3.15) will be used to analytically determine the linear

and nonlinear stability boundaries and also to characterize the limit cycle behavior of

the system near the loss of linear stability in Section 3.4.

3.3 Analysis

3.3.1 Steady-state equilibrium and linear stability analysis

The effect of infinitesimal perturbations on the evolution of the system about a steady

state is investigated in linear stability analysis. If the evolution moves away from the

steady state, the system is unstable and if the evolution approaches the steady state,

then the system is stable. This refers to the local analysis of the stability of the system

near a steady state. On the other hand, nonlinear stability analysis follows the effect

of a finite amplitude perturbation to the system and is used to characterize the resulting

asymptotic state.

As an initial step in performing the stability analysis of a steady-state equilibrium

solution for given parameter values, the steady state of the system for the given set of

parameters has to be calculated. Next linear (local) stability of the obtained equilibrium

is identified by examining the eigenvalues of the system linearized around the equi-

librium. This calculation is performed analytically by the linear stability analysis or

numerically by DDE-BIFTOOL using the Newton’s method.
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Figure 3.2: Modal convergence of linear stability boundary between yf and τ with (a)
c1 = 0.1, c2 = 0.06 and K = 0.8. In this Figure, · · · · · · N = 1, ·−·−·N =
2, −−− N = 9 and —— N = 10. (b) Comparison of limit cycle amplitude
from time evolutions with different number of acoustic Galerkin modes N
with yf = 0.3 and τ = 0.2 for case shown in 3.2 (a). (c) Comparison
of bifurcation plots for variation of non-dimensional heater power K with
different number of acoustic Galerkin modes N for system in 3.2 (a). Grey
areas are enlarged in inset figures to show convergence with increase in
number of modes.

If all the eigenvalues lie on the left half plane, the equilibrium is linearly stable to

small perturbations. When one or more eigenvalues of the linearized system lie on the

right half plane, the system is said to be linearly unstable. Stability properties of the

equilibrium is therefore changed when the real part of the most dominant eigenvalue

crosses zero as some relevant parameter of the system is varied. The value of the pa-

rameter at which the real part of the most dominant eigenvalue is zero is called the

bifurcation point.

The behavior of the system changes as this value of the parameter is crossed since

the equilibrium solution loses stability. New steady states emerge from the bifurcation

point depending on the type and nature of the bifurcation to be discussed in the next
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section. Once a bifurcation point is located with respect of one parameter, the bifur-

cation point itself is continued with a variation in a second relevant parameter of the

system. The resulting branch of bifurcation points gives us the linear stability boundary

which separates regions in the relevant parameter space with linearly stable and unsta-

ble equilibrium. This stability boundary is a manifold (Hillborn, 1994) in the space of

all the free parameters of the system, but is most conveniently represented by a curve in

several appropriate two-dimensional projections.

A typical stability boundary for free variation of the heater location and the time lag

of the system is shown in Fig. 3.2 (a). Figure 3.2 shows that for the chosen set of fixed

parameter values for the damping and the heater power, the system is linearly unstable

for a chosen range of heater locations yf depending on the time lag τ of the system

and vice versa. For very low and reasonably large values of τ such as τ < 0.15 and

τ > 0.85 in Fig. 3.2(a), the system is linearly stable for any heater location. Only in the

range 0.15 < τ < 0.85, the equilibrium solution can become unstable depending on

the heater location. The stability boundary is obtained for different number of acoustic

Galerkin modes and the results are plotted in Fig. 3.2(a). In this figure, it is seen that the

stability boundary for different number of acoustic Galerkin modes from 1 mode to 10

modes show little variation. Therefore a single mode analysis of the Rijke tube system

can accurately reproduce the stability boundary of a system with higher number of

modes. Determination of the number of Galerkin modes required to accurately capture

the linear and nonlinear behavior of the system is termed as modal convergence in the

caption of Fig. 3.2.

3.3.2 Numerical simulation, limit cycles and nonlinear analysis

The bifurcation points at the linear stability boundaries obtained in the previous section

are associated with a pair of complex conjugate eigenvalues crossing the imaginary axis

and accordingly there is a Hopf bifurcation. At the Hopf bifurcation point, the steady

state looses stability and becomes unstable, and isolated periodic solutions called limit

cycles emerge. The stability of the emerging branch of limit cycles decides the type or

nature of the Hopf bifurcation. The two types of Hopf bifurcation are sub-critical and
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super-critical Hopf bifurcations as explained in Chapter 2. In a sub-critical Hopf bifur-

cation, the branch of unstable limit cycles forms a region of bistability where the steady

solution is stable to small perturbations but is unstable to large perturbations. However

this branch of unstable limit cycle might undergo a fold bifurcation and stabilize. For

values below the fold point the steady solution is stable to perturbations of any magni-

tude and hence are globally stable. Therefore in the case of a sub-critical bifurcation,

the linear (local) and nonlinear (global) stability boundaries are different. If however

the limit cycles are stable the system smoothly evolves from a stable steady solution to

an unstable steady solution with progressively increasing limit cycle amplitudes. This

type of bifurcation is called a super-critical Hopf bifurcation.

We first check the existence of limit cycles in our model and the convergence of

the number of acoustic Galerkin modes. For this, the time evolutions of the system

with different number of acoustic modes for system parameters in the linearly unstable

region are compared in Figs. 3.2 (b). It can be seen from Figs. 3.2 (b) that there is a

limit cycle and also that the amplitude of the limit cycle shows very little variation with

an increase in the number of acoustic Galerkin modes. The variation in the phase of

the various solutions can be attributed to initial conditions. In fact, the difference in

the solutions with different numbers of acoustic modes is not visible when the phase

difference is compensated. This feature can be seen more easily from Figure 3.2(c)

wherein we have plotted the variation of the amplitudes of the first Galerkin mode with

a variation in the heater power K. In fact the measure used to quantify the asymptotic

state (t → ∞) of the system in Figure 3.2(c) is the difference between the maximum

and minimum value (|η1|) of the non-dimensional first acoustic velocity mode.

In Fig. 3.2, it is seen that when the damping coefficient c1 is greater than 0.1, a

single mode analysis is sufficient to obtain the bifurcation plot of the system. Large

damping coefficients imply that the higher modes are damped more effectively. There-

fore, systems with large damping values can be analyzed using a single mode analysis.

In the following section, analytical methods are employed in a single mode analysis to

obtain the bifurcation plot of the Rijke tube system. Throughout this chapter, numerical

results obtained for a system with N = 10 using DDE-BIFTOOL (Engelborghs and

Roose, 1999) which are compared with the analytical and experimental results.
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3.4 Analytical methods for bifurcation analysis

3.4.1 Linear stability analysis

The reduced order model for the Rijke tube consists of a single mode approximation and

is given by Eqns. (3.13) and (3.14). They can be rewritten as a set of delay differential

equations in the form

χ̇(t) = [B]χ(t) + [R]χ(t− τ) , (3.16)

with χ = [η (−η̇/π)]T , B =


 0 −π

π −2πζ1


 and R =


 0 0

√
3K
4

sin(2πyf )e
−λτ 0


.

The characteristic equation of this set of delay differential equations is

det([B] + [R]e−λτ − λI) = 0 . (3.17)

into which the substitution of [B] and [R] leads to the following equation with the

constants a0 = 2πζ1; a1 = π2; a2 =
√

3Kπ
4

sin(2πyf ).

4(λ, τ) = λ2 + a0λ + a1 + a2e
−λτ = 0 . (3.18)

As the consequence of the time delay which gives rise to the e−λτ term, Eqn. (3.18) is

a transcendental equation which indicates that the set of delay differential equation has

infinite number of eigenvalues (Engelborghs and Roose, 1999).

This Rijke tube model undergoes loss of stability from its steady state through a

Hopf bifurcation. This can be illustrated from the linear stability analysis as given in

Appendix A. Hopf bifurcation is characterized by a pair of purely imaginary eigenvalues

crossing the imaginary axis. Thus, the eigenvalues of the system have purely imaginary

values at the Hopf bifurcation point. Including this constraint as λ = ±iω in Eqn. (3.18)

and equating the real and imaginary parts of the equation separately to zero, we obtain

two equations relating the system parameters and the eigenfrequency ω as given in

Eqns. (3.19) and (3.20).

a1 − ω2 + a2cos(ωτ) = 0 , (3.19)

a0ω − a2sin(ωτ) = 0 . (3.20)
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Obtaining expressions for sin(ωτ) and cos(ωτ) from the above equations and using the

relation sin2(ωτ)+cos2(ωτ) = 1, the transcendental equation in (3.18) can be rewritten

in terms of as a fourth order equation of the eigenfrequency ω as below:

ω4 + (a2
0 − 2a1)ω

2 + (a2
1 − a2

2) = 0 . (3.21)

Real roots of equation (3.21) give the ω values at the Hopf bifurcation points and there-

fore can be used to estimate the Hopf bifurcation point for a given system configuration.

The linear stability boundary is obtained as the locus of all the Hopf bifurcation points

when two system parameters are simultaneously varied.

Simultaneous variations of the non-dimensional heater power K with the time lag

τ , damping coefficient c1 with the time lag τ and the heater location yf with the time lag

τ are examined. Equations (3.19), (3.20) and (3.21) are re-written such that the param-

eters which are varying are functions of the frequency ω and the other fixed parameters.

For example, the non-dimensional power K and time lag τ can be re-written in terms

of the frequency ω and other fixed parameters as

K =

[
(ω4 + (a2

0 − 2a1) + ω2 + a2
1)

16

3π2 sin2(2πyf )

]1/2

, (3.22)

τ =
1

ω
arctan

(
a0ω

ω2 − π2

)
. (3.23)

The frequency ω is then varied to obtain the analytical linear stability boundary.

3.4.2 Nonlinear analysis near Hopf point

We noted in Fig. 3.2(c) that a sub-critical Hopf bifurcation occurred when the non-

dimensional heater power is varied. This behavior is obtained for the variation of other

parameters of the system as it is an inherent property of the nonlinearity present in the

system. To justify this claim, we argue first with a qualitative analysis which is then

substantiated with a more rigorous analysis using the method of multiple scales along

the lines of Saha et al. (2009).
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The nature of the bifurcation associated with a source term nonlinearity of the form

(1±X)α, where X is the state variable and α is a real number which can be identified by

expanding the nonlinearity in a series about small X and dropping higher order terms.

A binomial expansion of the above expression results in the following equation.

1± αX +
α(α− 1)

2!
X2 ± α(α− 1)(α− 2)

3!
X3 + .... . (3.24)

In the above expression, the signs of the first and the third order terms are seen

to be same when 0 < |α| < 1 and |α| > 2 . The signs will be different when the

value of α lies between 1 < |α| < 2. The relative signs of the first and the third order

term identifies the normal form and dictates the nature of the bifurcation. Whenever

these terms have the same sign, the bifurcation is sub-critical while it is supercritical

when these terms have different signs. This result has been obtained in the context of

machine tool vibrations by Kalmar-Nagy et al. (2001) and Wahi and Chatterjee (2005)

for α = 3/4. In the model for the heat release rate fluctuations in a Rijke tube, α = 1/2,

which implies that this model will exhibit sub-critical Hopf bifurcation.

The determination of the normal form distinguishes between super- and sub-critical

Hopf bifurcations. The method of multiple scales can be used to systematically iden-

tify the normal form of a system generated by a differential equation. This method

transforms a set of evolution equations into a lower order approximation of amplitude

modulation equations (Nayfeh and Balachandran, 1995). The amplitude modulation

equations are sufficient to describe the periodic solutions and their stability. The second

order equation describing the evolution of the reduced order model of the Rijke tube is

given in Eqn. (3.15).

To derive the amplitude modulation equation, the state variables of Eqn. (3.15) are

re-scaled as η(t) = εy(t) and expanded about the Hopf bifurcation point in terms of

a small parameter ε << 1, where ε is the difference between the current value of the

parameter and its critical value. This scaling is performed in order to separate the terms

according to their power in ε. Modification of Eqn. (3.15) with the above scaling, written
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to O(ε2) is given below:

y′′ + 2ζ1πy′ + π2y + ∆
[
y(t− τ)− 3

4
ε cos(πyf )y(t− τ)2

+
9

8
ε2 cos(πyf )

2y(t− τ)3
]

+ O(ε3)... = 0 . (3.25)

When the bifurcation parameter is at the critical value at the Hopf point, e.g. when

non-dimensional power is the bifurcation parameter, we set ∆ = ∆c to obtain

y′′ + 2ζ1πy′ + π2y + ∆c

[
y(t− τ)− 3

4
ε cos(πyf )y(t− τ)2

+
9

8
ε2 cos(πyf )

2y(t− τ)3
]

= 0 . (3.26)

At another point close to the Hopf point with ∆2 = ∆c + ε2δ, we have

y′′ + 2ζ1πy′ + π2y + (∆c + ε2δ)
[
y(t− τ)− 3

4
ε cos(πyf )y(t− τ)2

+
9

8
ε2 cos(πyf )

2y(t− τ)3
]

= 0 . (3.27)

The underlying idea of the method of multiple scales (MMS) is to consider that

the system contains multiple relevant and independent time scales, instead of a single

time variable (Nayfeh and Balachandran, 1995). In the present case, we define multiple

time scales which include the original time scale t0(t) = t and the slow time scales of

t1(t) = εt and t2(t) = ε2t. The evolution of the system can now be written in terms

of these different time scales as given in Eqn. (3.28) and the time delayed term can be

expanded as given in Eqn. (3.29).

y(t) = Y (t0, t1, t2) = Y0(t0, t1, t2) + εY1(t0, t1, t2) + ε2Y2(t0, t1, t2) + ... , (3.28)

y(t− τ) = Y (t0 − τ, t1 − ετ, t2 − ε2τ)

= Y0(t0 − τ, t1 − ετ, t2 − ε2τ) + εY1(t0 − τ, t1 − ετ, t2 − ε2τ) + ...

(3.29)

The expression in Eqn. (3.29) is further Taylor expanded about ε = 0 and the result-

ing expressions are substituted into Eqn. (3.27). Collecting the zeroth order terms in ε
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recovers the linear equation as given below:

d2Y0(t0, t1, t2)

dt20
+ ζ1

dY0(t0, t1, t2)

dt0
+π2Y0(t0, t1, t2)+∆cY0(t0− τ, t1, t2) = 0 , (3.30)

whose steady state solution is

Y0(t0, t1, t2) = C1(t1, t2) sin(ωt0) + C2(t1, t2) cos(ωt0) . (3.31)

The above solution is accurate only until t < O(1/ε). When the system evolves

beyond time t > O(1/ε), terms with O(ε) = 1 and higher orders also contribute to the

solution. The equation for O(ε) = 1 after substituting for the solution of Y0 is given as:

∂2

∂t0
2
Y1 (t0, t1, t2) + ζ1

∂

∂t0
Y1 (t0, t1, t2) + π2Y1 (t0, t1, t2) + icY1 (t0 − τ, t1, t2)

+ Q1 sin (ω t0) + Q2 cos (ω t0)

+ Q3 sin (2ωt0 ) + Q4 cos (2ωt0 ) + Q5 = 0 , (3.32)

where

Q1 = [ζ1 − τ∆c cos (ωτ)]
∂C1 (t1, t2)

∂t1
− [2 ω + τ ∆c sin (ω τ)]

∂C2 (t1, t2)

∂t1
, (3.33a)

Q2 = [2 ω + τ ∆c sin (ω τ)]
∂C1 (t1, t2)

∂t1
+ [ζ1 − τ ∆c cos (ω τ)]

∂C2 (t1, t2)

∂t1
, (3.33b)

Q3 = 3/8 ∆c cos (π yf ) sin (2ω τ)
[
C2

1 (t1, t2)− C2
2 (t1, t2)

]

+ 3/4 ∆c cos (π yf ) C1 (t1, t2) C2 (t1, t2) cos (2ω τ) , (3.33c)

Q4 = 3/8∆c cos (πyf ) cos (2ωτ)
[
C2

1 (t1, t2)− C2
2 (t1, t2)

]

+ 3/4 ∆c cos (πyf ) C1 (t1, t2) C2 (t1, t2) sin (2ωτ) , (3.33d)

Q5 = −3/8 ∆c cos (π yf )
[
C2

1 (t1, t2) + C2
2 (t1, t2)

]
. (3.33e)

As the effects of the original time scale t0(t) = t have already been included in the

solution of Y0, they must not be included in the solution for Y1. However, the contri-

butions of the terms sin (ωt0) and cos (ωt0) become non-negligible in the expression

for Y1 when the system evolves past the slow time scale of t > t1. Therefore, in or-

der to avoid the effect of these secular terms (Nayfeh and Balachandran, 1995), the
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coefficients of sin (ωt0) and cos (ωt0) are explicitly set to zero. This leads to the con-

ditions that ∂C1/∂t1 and ∂C2/∂t1 are zero. Equation (3.32) can then be solved for the

particular solution of Y1 as

Y1(t0, t1, t2) = C3(t1, t2) + C4(t1, t2) sin(2ωt0) + C5(t1, t2) cos(2ωt0) . (3.34)

Substituting the expressions for Y0 and Y1 and also using the conditions ∂C1/∂t1 =

0 and ∂C2/∂t1 = 0 we obtain the equation for O(ε) = 2. This equation also has

coefficients for sine and cosine components of the original time scale and these secular

terms must be set to zero to obtain ∂C1/∂t2 and ∂C2/∂t2. The rate of change of C1 and

C2, correct up to the second order, are given by the following expressions:

∂C1

∂t
= ε

∂C1

∂t1
+ ε2∂C1

∂t2
+ O(ε3) , (3.35)

∂C2

∂t
= ε

∂C2

∂t1
+ ε2∂C2

∂t2
+ O(ε3) . (3.36)

A co-ordinate transformation to polar co-ordinates is performed as C1 = R1(t) cos(φ1(t))

and C2 = R1(t) sin(φ1(t)) such that the original variable can be written as given below.

U(t) = εy(t) = εR1(t) sin (t + φ1(t)) . (3.37)

If A1(t) = εR1(t) then the equations governing the evolution of the system over the

slow time scales are given of the form given in Eqns. (3.38) and (3.39).

dA1

dt
= B1A1 + B2A

3
1 , (3.38)

dφ1

dt
= B3 + B4A

2
1 . (3.39)

The expressions for B1 and B2 are as given in Appendix B. The constant amplitude
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at limit cycle is calculated from Eqn. (3.38) as given below.

A1 =

√−B1

B2

. (3.40)

The stability analysis of the fixed point of the slow flow amplitude Eqn. (3.38) gives

the stability of the limit cycle. Information of the stability of the fixed point of the

system together with the stability of the limit cycle at the same parameters can be used

to identify the type of Hopf bifurcation.

Culick (2006) employed the method of time averaging in a single mode analysis

of thermoacoustic instability. The method of time averaging assumes that the Mach

number M of the flow is small. It also assumes that the changes in amplitudes and

phase takes place much slower than the oscillation frequency. Using these assumptions,

equations for the amplitude and phase of the evolution during limit cycle were derived.

By setting the rate of change of the amplitude to be zero, the amplitude of the limit

cycle at asymptotic time was determined in this analysis. Averaging methods applied to

systems with delays assume that the time delay is small (Chatterjee, 2007). However,

the method of multiple scales does not require that the delay term to be small and is

hence are better suited to the analysis of instabilities in systems with time delay (Saha

et al., 2009).

3.4.3 Nonlinear stability analysis

Change in linear stability occurs at the Hopf point and the locus of the Hopf points gives

the linear stability boundary of the system. In case of sub-critical Hopf bifurcations, the

limit cycles near the Hopf point are themselves unstable and this branch of unstable

limit cycles can undergo a fold bifurcation at some finite amplitude of the measure.

Thus, for systems exhibiting sub-critical Hopf bifurcations, the stability boundary of the

system to finite amplitude disturbances is different from the linear stability boundary

defined by the Hopf points. The locus of all these fold points is called the nonlinear

stability boundary. Determination of the fold points can be done with the method of

harmonic balance. Rewriting equation (3.15) with a0 = 2πζ1, a1 = π2 and a2p =
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(
Kπ sin(πyf )/

√
3
)

we obtain the following equation.

Ü + a0U̇ + a1U + a2p

[√
|1 + 3 cos(πyf )U(t− τ)| − 1

]
= 0 . (3.41)

In the method of harmonic balance, we assume that the limit cycle is purely a func-

tion of a single frequency. Therefore we use the expression U(t) = A1cos(ωt) + A2 in

the previous equation. Here, A1 is the amplitude of the limit cycle and A2 is the offset

of the limit from the mean value.

(a1 − ω2)A1 cos(ωt) + a0A1ω sin(ωt) + a1A2

+ a2p

[√
|1 + 3 cos(πyf )(A1 cos(ω(t− τ)) + A2)| − 1

]
= 0 .

(3.42)

Due to the term under the square root, the above equation can still not be simpli-

fied to give different harmonics. Therefore, we expand the term under the square root

as given below which is correct till the fundamental frequency. The effect of higher

harmonics is collected in the term HH and is assumed to be negligible.

√
|1 + 3 cos(πyf )(A1 cos(ω(t− τ)) + A2)| = C0(yf , ω, τ, A1, A2)

+ C1(yf , ω, τ, A1, A2) cos(ωt)

+ C2(yf , ω, τ, A1, A2) sin(ωt) + HH .

(3.43)

Here, the Fourier coefficients C0, C1 and C2 are defined as given below in Eqns. (3.44)

to (3.46). Substituting these constants in equation (3.42), we obtain equation (3.47)

where the effect of different harmonics can be separated.

C0 =
2π

ω

∫ 2π
ω

0

√
(1 + 3 cos(πyf )U(t− τ))dt , (3.44)

C1 =
ω

π

∫ 2π
ω

0

√
(1 + 3 cos(πyf )U(t− τ)) cos(ωt)dt , (3.45)

C2 =
ω

π

∫ 2π
ω

0

√
(1 + 3 cos(πyf )U(t− τ)) sin(ωt)dt . (3.46)
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[(a1 − ω2)A1 + a2pC1] cos(ωt) + [a2pC2 − a0ωA1] sin(ωt)

+[a1A2 + a2p(C0 − 1)] = 0 . (3.47)

Equating the harmonics separately to zero, we obtain the following three equations

for the cosine, sine and constant components as given below. This set of three equations

can be solved for the three unknowns A1, A2 and ω.

(a1 − ω2)A1 + a2pC1 = 0 , (3.48)

a2pC2 − a0ωA1 = 0 , (3.49)

a1A2 + a2p(C0 − 1) = 0 . (3.50)

In addition, we assume that the frequency of the periodic solutions of interest is a

constant and is equal to the frequency at the loss of linear stability. The validity of this

assumption has been verified to hold from numerical analysis using DDE-BIFTOOL.

Therefore, one of the above equations becomes redundant. In this paper, we consider

Eqn. (3.49) to be redundant. Once a system has been specified, the above Eqns. (3.48)

and (3.50) can be used to solve for the amplitude of the limit cycle and the offset of

the limit cycle from the mean. However, the inverse problem of identifying a single

parameter value given all other parameters and the limit cycle amplitude is easier to

solve as the Fourier coefficients can be numerically evaluated.

In order to obtain the parameter value at the fold point, we make use of the fact

that at the fold point, the term
√

1 + 3 cos(πyf )(A1 cos(ω(t− τ)) + A2) vanishes. This

condition serves to relate A1 and A2 thus leaving only Eqn. (3.50) to be solved to obtain

the unknown parameter value at the fold point. We simplify the expression within the

square root as given below:

1 + 3 cos(πyf )(A1 cos(ω(t− τ)) + A2) = 0 . (3.51)

A1 cos(ω(t− τ)) =

[
1 + 3 cos(πyf )A2

−3 cos(πyf )

]
. (3.52)
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As A1 is the amplitude of the limit cycle, the cosine function is substituted with its

maximum value of one, to give the following equation.

A1 =

[
1 + 3 cos(πyf )A2

−3 cos(πyf )

]
. (3.53)

Substituting Eqn. (3.53) in (3.51) and rewriting, the following simplification can be

done.

1 + 3 cos(πyf )(A1 cos(ω(t− τ)) + A2)

= 1 + 3 cos(πyf )

([
1 + 3 cos(πyf )A2

−3 cos(πyf )

]
cos(ω(t− τ)) + A2

)

= (1 + 3 cos(πyf )A2)(1− cos(ω(t− τ))) . (3.54)

Further, substituting the result of Eqn. (3.54) in the expression for the coefficients given

in Eqns. (3.44) to (3.46), the coefficients can be evaluated numerically as given below.

C0 =
2
√

2

π
[1 + 3 cos(πyf )A2]

1/2 cos
(ωτ

2

)
, (3.55)

C1 = −4
√

2

3π
[1 + 3 cos(πyf )A2]

1/2 cos
(ωτ

2

)
, (3.56)

C2 = −8
√

2

3π
[1 + 3 cos(πyf )A2]

1/2 sin
(ωτ

2

)
. (3.57)

Equation (3.50) can then be rewritten as given in (3.58), which can further be mod-

ified into a second order equation for the unknown as given in (3.59).

a1A2 +
2
√

2a2p

π

(
1 + 3cos(πyf )A2

)1/2

cos
(ωτ

2

)
− a2p = 0 . (3.58)

A2
2 −

[
2a2p

a1

+
24a2

2p cos(πyf ) cos2(ωτ
2

)

π2a2
1

]
A2 +

[
a2

2p

a2
1

− 8 cos2(ωτ
2

)a2
2p

π2a2
1

]
= 0 . (3.59)

Equation (3.59) can be solved to obtain A2 which can be used to identify the value of

the unknown parameter at the fold point. The fold points identified for the simultaneous

variation of two system parameters can be plotted as the nonlinear stability boundary.

Comparison of the analytically obtained nonlinear stability boundaries with numerical

results are shown in Fig. 3.16.
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A simplification of the above derivation can be performed by assuming that the

offset A2 = 0. The asymptotic state of the periodic solution is then described by only

the amplitude A1 which is simplified from Eqn. 3.53 as given below:

A1 =
1

−3 cos (πyf )
. (3.60)

This expression shows that the amplitude at the fold point is independent of the heater

power K, damping coefficient c1 and time lag τ . This result is visible in Figs. 3.4 (b)

and 3.5 (b), where the amplitude of limit cycles at the fold points are independent of

time lag τ . The amplitude at the fold point is only proportional inversely to the location

of the heater yf .

3.5 Results from numerical continuation

3.5.1 On the effect of the small time lag assumption

The delay differential equations governing the Rijke tube system are linearized about

τ = 0 to get ordinary differential equations which are valid for small time lags. The

corresponding set of equations in the matrix form dχ/dt = Bχ is given in Balasubra-

manian and Sujith (2008c). This matrix B can be used to calculate the eigenvalues of

the system with small time lag assumption and the value of the parameters when the

system becomes unstable can be noted as the stability boundary. This approximate sta-

bility boundary is compared with the exact stability boundary predicted by the system

of delay differential equations given by Eqns (3.8) and (3.9) in Fig. 3.3.

The linear stability boundaries showing the variation of the critical nondimensional

heater power K, damping coefficient c1 and the heater location yf with the time lag in

the system τ are shown in Figures 3.3(a) to 3.3(c). It can be seen clearly that for all the

three cases, the stability boundary predicted with the small time lag assumption does

not match very well with the exact stability boundary of the delayed system. The curves

approximately match when the time lag τ is very small.

However, the match deteriorates very fast with an increase in the time lag τ . Note
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Figure 3.3: Comparison of stability boundary obtained with −−− and without ——
the small time lag assumption between (a) non-dimensional heater power K
and time lag τ with the other system parameters being c1 = 0.1, c2 = 0.06
and yf = 0.3. (b) damping coefficient c1 and time lag τ for c2 = 0.06,
K = 1 and yf = 0.3 (c) location of heater (yf ) and time lag τ with the
other system parameters being c1 = 0.1, c2 = 0.06 and K = 0.8.

from Fig. 3.3 (b) that the small time lag assumption breaks down even at values of time

lag like τ = 0.2. Mass flow rates occuring in experiments can be convereted to time

lags using the quasi-steady approximation given by Lighthill (1954). In this relation,

the time lag is related to the mass flow rate through the mean flow velocity u0 as

τD =
0.2dw

u0

. (3.61)

The obtained time lag can be non-dimensionalised using the factor c0/l to obtain τND

or τ as

τ = τND =
0.2dw

u0

(c0

l

)
. (3.62)

Typical flow velocities encountered in experiments (Matveev, 2003b) are in the range

0.05−0.27 m/s, which correspond to τ values between 0.45−0.07 for the experimental

configuration described by Matveev (2003b). Hence, it is important to relax the small

time lag assumption during the determination of stability in a Rijke tube system.
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3.5.2 Effect of heater power

The effect of varying the non-dimensional heater power K on the evolution of the sys-

tem is analyzed with the bifurcation diagram as shown in Fig. 3.4 (a). Nondimensional

heater power can be increased by increasing the electrical power supplied to the heater

(Matveev, 2003a) and it represents an increase in the driving force given to the system.

Increased driving strives to destabilize the system. Therefore, for small values of K, the

equilibrium is stable and all perturbations decay asymptotically to zero. Increasing K

decreases the margin of stability of the flow. At a critical value of K, a pair of complex

eigenvalues of the system cross over to the right half plane (Hopf bifurcation) and the

system becomes linearly unstable. Linear instability of the system is observed as an

oscillating flow pattern in the tube.

The variation of |η1| with K is shown in Fig. 3.4 (a). The empty circles indicate un-

stable solutions and filled circles indicate stable solutions. A limit cycle is first obtained

by varying the parameter near the Hopf point and iterating using a Newton’s scheme.

As discussed earlier, the bifurcation is sub-critical and the resulting small-amplitude

limit cycles close to the Hopf point are unstable. These unstable limit cycles are ob-

tained using numerical continuation of the limit cycle and they coexist with the stable

equilibrium. This unstable branch of limit cycles further undergoes a fold or turning

point bifurcation and gains stability (Ajjarapu, 2006).

The bifurcation diagram for the variation of the non-dimensional heater power is

obtained for various values of time lag τ in the interval [0.2, 0.8] and all the results are

plotted along with the stability boundary for the system as a 3-D plot in (τ, K, |U1|) in

Fig. 3.4(b). From this 3-D bifurcation diagram, we can also obtain the 2-D bifurcation

diagram involving the limit cycle amplitude variation with the time lag τ for a given

value of K.

3.5.3 Effect of damping

To study the effect of the variation of the amount of damping present in the system on

the response of the system, one of the damping coefficients c1 of the mode dependent

72



Figure 3.4: (a) Bifurcation plot for variation of non-dimensional heater power K. The
other parameter values of the system are c1 = 0.1, c2 = 0.06, yf = 0.3 and
τ = 0.2 (b) 3D plot of bifurcation plot of non-dimensional heater power
K for varying values of time lag τ with the other parameters of the system
c1 = 0.1, c2 = 0.06 and yf = 0.3.

damping model is varied. Change in the damping of the system can be achieved in ex-

periments by changing the end conditions of the duct. As expected, increased damping

has a stabilizing effect on the dynamics of the system since the equilibrium is stable for

any τ for larger damping coefficients and lowering of damping might lead to instability

depending on the time lag τ as shown in Fig. 3.3(b).

For a fixed time lag, there exists a critical value of c1 below which all perturbations

grow to limit cycles and above which there exists a region wherein large amplitude

perturbations grow to limit cycles and small perturbations decay to the equilibrium as

shown in Fig. 3.5(a). The critical value of the damping coefficient c1 and the bifurcation

diagrams has been obtained for various values of the time lag τ again and the results

are plotted as a 3-D plot in Fig. 3.5(b). A 2-D projection of this plot on the (τ, c1) plane

gives us the linear stability boundary (Hopf points also shown in Fig. 3.3(b)) as well as

the nonlinear stability boundary (fold points). The region enclosed between them gives

us the bistable region to be discussed in more detail in subsequent subsections.
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Figure 3.5: (a) Bifurcation plot for variation of damping coefficient c1. The other pa-
rameter values of the system are c2 = 0.06, K = 1, yf = 0.3 and τ = 0.2
(b) 3D plot of bifurcation plot of damping coefficient for varying values of
time lag τ with the other parameters of the system c2 = 0.06, K = 1 and
yf = 0.3.

3.5.4 Effect of heater location

The location of the heat source yf also has a very significant effect on the dynamics of

the system. The stability of the system does not change monotonically from stable to

unstable or vice-versa with changes to the location of the heater along the duct. When

the location of the heater along the duct is varied from the upstream open end, the

system is initially linearly stable. At a critical value of the heater location yf1, a pair

of complex eigenvalues crosses over to the right half plane and the system becomes

linearly unstable. When the heater is located at further locations along the duct, the

thermoacoustic system remains linearly unstable till yf2. When the heater is positioned

at yf2, the unstable pair of complex eigenvalues cross back into the left half of the

complex plane. This Hopf bifurcation causes the system to regain linear stability as

also shown in Fig. 3.3(c).

The bifurcation plot for the variation of heater location yf shows that sub-critical

Hopf bifurcations occur at both yf1 when the system loses linear stability and at yf2,

when the system regains linear stability as seen from Fig. 3.6. The stable branch of

limit cycles arising from the turning point bifurcations of the two branches of unstable

limit cycles emanating from the Hopf points merge smoothly such that the region of
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Figure 3.6: Bifurcation plot for variation of location of heater yf . The other parameter
values of the system are c1 = 0.1, c2 = 0.06, K = 0.8 and τ = 0.2.

linear instability is completely bounded by a single branch of stable limit cycles. Any

initial condition within the linearly unstable region will asymptotically reach the cor-

responding stable limit cycle. An initial condition within the sub-critical region will

either decay asymptotically or reach the corresponding limit cycle based on whether it

is above or below the stable manifold of the unstable limit cycles. The amplitude of

limit cycle is seen to be a strong function of the location of the heater and is seen to

increase with an increase in the heater location from the open upstream condition.

3.5.5 Bistable regions

It can be observed from the bifurcation plots that there are multiple co-existing solu-

tions in the range of the free parameter values between the Hopf point and the fold

point. A stable steady state and a pair of stable and unstable limit cycles are seen to

co-exist which is a general feature of systems exhibiting sub-critical Hopf bifurcation

followed by a fold bifurcation which gives rise to a branch of stable limit cycle solu-

tions. Depending on the initial condition, the system will asymptotically reach a steady

state or a limit cycle. This range of parameters has two possible asymptotic states and

is hence called the region of bistability. The region of bistability for the variation of

non-dimensional heater power and the time lag is shown in Fig. 3.7.

In this figure, the linear stability boundary is the locus of the Hopf points, i.e, points

above which an infinitesimal perturbation is sufficient to destabilize the system. Simi-
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Figure 3.7: Region of bistability obtained for the bifurcation between non-dimensional
heater power K and time lag τ with the other system parameters being c1 =
0.1, c2 = 0.06 and yf = 0.3.

larly, the nonlinear stability boundary is the locus of the fold points, i.e., points outside

which the steady state is stable to any finite amplitude perturbation. This region outside

the nonlinear stability boundary is called the region of global stability (Strogatz, 2000).

In the region between the two curves (the bistable region), a finite amplitude pertur-

bation is required to destabilize the system from the unperturbed state. The nonlinear

stability boundary can also be called as the ‘triggered’ or ‘pulsed’ instability bound-

ary as it marks the beginning of the triggering. Thus the linear and nonlinear stability

boundaries divide the parameter plane into three regions. The globally unstable region

is shaded with light grey, the region filled with dark grey correspond to region of bista-

bility and the white region represents globally stable region in Fig. 3.7.

Figure 3.8 shows the bistable regions along with the globally stable and unstable re-

gions for variations of the damping coefficient c1 and the heater location yf as functions

of the time lag τ . It can be seen from Fig. 3.7 that the bistability region is much smaller

for small time lags and it increases with an increase in the time lag in the system. Hence,

the effect of the nonlinearity introduced by the heating is more profound for larger time

lags which roughly corresponds to smaller speeds of mean flow in the tube.

In Fig. 3.8 (a), we can observe that the bistable region in the damping coefficient
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Figure 3.8: Region of bistability obtained for the bifurcation between (a) damping coef-
ficient c1 and time lag τ with the other system parameters being c2 = 0.06,
K = 1 and yf = 0.3 (b) heater location yf and time lag τ with the other
system parameters being c1 = 0.1, c2 = 0.06 and K = 0.8.

c1 first increases with an increase in τ , reaches a maximum value and starts decreas-

ing thereafter. The variation of the extent of the bistable region with the variation of

the parameter yf first decreases with an increase in the time lag τ and increases after

reaching a minimum value at a certain critical value of τ as shown in Fig. 3.8 (b). The

extremum value of the bistable regime typically appears at the parameter value τ at

which the other parameter value corresponding to the linear stability boundary reaches

an extremum itself.

3.6 Characterizing dynamical behavior through time evo-

lutions

The linear stability boundaries obtained for the simultaneous variation of various pa-

rameters with the time lag of the system are given in Fig. 3.3. The variation of the time

lag of the system can be obtained in experiments by changing the mean flow rate of

air through the duct. However, the most relevant parameters which could be varied in

an experiment are the heater location along the duct yf and the heater power (Matveev,

2003b) K. The stability boundary for the simultaneous variation of these two parame-

ters is given in Fig. 3.9.
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Figure 3.9: Linear stability boundary obtained for location of heater yf and non-
dimensional heater power K with the other system parameters being c1 =
0.1, c2 = 0.06 and τ = 0.2. Time evolutions at points marked from A
to F are studied to observe the asymptotic behavior of the system at these
parameter values.

This figure shows that the linear stability boundary crosses itself many times to form

loops. Along the direction of increasing power for a given heater location, linear sta-

bility is lost after the first crossing of the stability boundary. Further crossings lead to

other pairs of eigenvalues moving to the right half plane. Accordingly the regions en-

closed by the loops in the stability curves have two or more pairs of unstable eigenvalues

and hence indicate the occurrence of interesting dynamical behavior in these parame-

ter combinations e.g. points A to F . At these parameter combinations, complicated

dynamical behavior such as quasiperiodicity, co-existing multiple attractors, chaos etc.

may be observed.

In this subsection we will characterize the dynamical behavior of the system through

time evolutions corresponding to some typical points marked A to F in the linearly un-

stable region of the Fig. 3.9 and its inset. These are chosen to represent more compli-

cated solutions and situations than those already discussed in this work so far.

Shown in Fig. 3.10 (a) is the system evolution for parameters corresponding to the

point A. At this point, we see that the system has an asymptotic behavior in which the
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Figure 3.10: Quasiperiodic evolution is seen from the phase plots of system near point
A with the system parameters being c1 = 0.1, c2 = 0.06, K = 4.5,
yf = 0.05332 and τ = 0.2. (a) Time evolution with periodically mod-
ulated evolution and (b) Phase plot of evolution from 3.10 (a) showing a
quasiperiodic orbit. Arrow indicates direction of evolution of the system.

amplitude of the limit cycle is modulated periodically. This type of regular amplitude

modulation of the time series represents a quasiperiodic solution. Figure 3.10(b) shows

a 3-D projection of the phase portrait corresponding to the quasiperiodic solution. It can

be clearly observed from Fig. 3.10(b) that the trajectory stays on a torus and completely

fills out its surface.

We also observe chaotic solutions for our system for specific choice of parameter

values. One of the routes to chaos is the period-doubling route to chaos wherein peri-

odic solutions with longer and longer time-periods are observed with a change in some

typical parameter till aperiodic solutions appear (Baker and Gollub, 1990). This par-

ticular route to chaos is observed as parameters are varied from points B through E.

These points are chosen such that they lie in the direction of increasing heater power at

a given heater location as shown in Fig. 3.9. The phase plot of the evolution after the

loss of linear stability at point B shows a limit cycle as given in Fig. 3.11(a).

Further increase in the nondimensional heater power to point C and D causes limit

cycles with periods that are twice and four times the time-period corresponding to point

B, respectively. The phase plots of these limit cycles are shown in Figures 3.11(b)

and (c) wherein the simple closed curve corresponding to the limit cycle in Fig. 3.11(a)

transforms into a closed curve which intersects itself once and twice respectively in

this projection. With a sufficient increase in the heater power to point E, the system
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Figure 3.11: Period doubling route to chaos is seen from the phase plots of system at
points B through E with the system parameters being c1 = 0.1, c2 = 0.06,
yf = 0.1 and τ = 0.2. Arrow heads indicate direction of evolution of
system. (a) Phase plot at K = 4. A limit cycle of period 1 is obtained,
(b) Phase plot at K = 10. A limit cycle of period 2 is obtained, (c) Phase
plot at K = 10.1. A limit cycle of period 4 is obtained and (d) Phase plot
at K = 12. The phase plot shows no discernable periodic behavior and
trajectory moves all over the phase plot.
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Figure 3.12: Coexisting multiple attractors obtained with different initial conditions at
point F from Fig. 10 with the system parameters being c1 = 0.1, c2 =
0.06, K = 3.5, yf = 0.7141 and τ = 0.2. (a) Time evolution from
initial condition η1 = 1.5, ηi = 0 ∀ i 6= 1 and Pi = 0 ∀ i = 1, ..N ,
(b) Time evolution from initial condition η1 = 0.5, ηi = 0 ∀ i 6= 1 and
Pi = 0 ∀ i = 1, ..N , Frequency content of evolution (c) from Fig. 11(a)
and (d) from Fig. 11(a) with insets showing the phase plot.

evolution becomes highly aperiodic (chaotic), and the trajectory is seen to fill almost an

area in the phase space as shown in Fig. 3.11(d).

Figure 3.12 shows that the time evolution of the system at point F with two dif-

ferent initial conditions gives two different asymptotic behavior. Time evolution at F

with initial condition η1 = 1.5, ηi = 0 ∀ i 6= 1 and Pi = 0 ∀ i = 1, ..N evolves

into a complicated quasiperiodic attractor with a large magnitude of the total velocity

fluctuation as shown in Fig. 3.12(a). The frequency content of this attractor is shown

in Fig. 3.12(c) wherein the phase space projection of the solution on the first acoustic

mode η1 and − (
η̇1

π

)
is also shown in the inset. The arrow indicates the direction of

evolution of the system in the phase plot. A second frequency close to zero is distinctly

visible along with the major frequency at around 0.5 and its harmonics.

The time evolution with a different initial condition of η1 = 0.5, ηi = 0 ∀ i 6= 1 and

− (
η̇i

iπ

)
= 0 ∀ i = 1, ..N however reaches a small amplitude limit cycle where the third
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Figure 3.13: Poincare maps for different asymptotic states (a) Limit cycle shown in
Fig. 3.11 (a), (b) Period 2 state shown in Fig. 3.11 (b), (c) Quasiperiodic
state as shown in Fig. 3.10 and (d) Chaotic orbit as shown in Fig. 3.11 (d).

mode is primarily unstable as shown in Fig. 3.12(b). The frequency content of this limit

cycle shown in Fig. 3.12(d) clarifies that the third mode with a fundamental frequency

of around 1.5 is unstable. At a given heater power level and heater location, we thus

observe the coexistence of two different attractors. One of them is a low amplitude

limit cycle and the other is a high amplitude quasiperiodic solution. Thus, a given sys-

tem can produce two qualitatively as well as quantitatively different oscillations during

instability.

Thus, we have seen that for different system configurations, the dynamics of the

system model can exhibit complicated dynamical behaviors such as coexisting attrac-

tors, quasiperiodicity, complicated limit cycles with increasing time-periods and chaotic

solutions. Similar behavior have been observed in experiments: ducted premixed flame

(Kabiraj et al., 2010) and laboratory combustor (Sterling and Zukowski, 1991).

The different asymptotic states obtained in Figs. 3.10 to 3.12 were identified using

tools from dynamical systems’ theory such as the Fast Fourier Transform (FFT) and

phase portraits. They can also be identified using Poincare maps as shown in Fig. 3.13.

Poincare map of the trajectory plots the trajectory of the system in a phase plane which

is perpendicular to the flow of the trajectory (Hillborn, 1994). In the present work,

82



Figure 3.14: Comparison of numerical and analytical linear stability boundary for (a)
variation of heater power and time lag, (b) for variation of damping coef-
ficient and time lag and (c) for variation of heater location and time lag.
Solid lines are analytical solutions and crosses are numerical solutions.
Common parameters are c1 = 0.1, c2 = 0.06, K = 1, yf = 0.3 and
τ = 0.2.

two sided Poincare sections of the asymptotic state are obtained. When the asymptotic

state is a limit cycle, the Poincare section displays two points as shown in Fig. 3.13

(a) while that of a period-2 trajectory shows 4 points in Fig. 3.13 (b). The Poincare

map of a quasiperiodic trajectory in Fig. 3.13 (c) shows that sucessive intersections of

the trajectory with the Poincare section forms a set of points on the surface of a torus.

Chaotic evolutions of the system display a set of points in the Poincare map as shown

in Fig. 3.13 (d).
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Figure 3.15: Comparison of numerically and analytically obtained limit cycle ampli-
tudes near Hopf point for (a) variation of heater power and time lag (b) for
variation of damping coefficient and time lag and (c) for variation of heater
location and time lag. Solid lines are analytical solutions and crosses are
numerical solutions. Common parameters are c1 = 0.1, c2 = 0.06, K = 1,
yf = 0.3 and τ = 0.2.

3.7 Comparison with analytical estimates

The linear stability boundary can be obtained analytically as detailed in Section 3.4.1.

Linear stability boundaries for the simultaneous variation of the non-dimensional heater

power K, damping coefficient c1, heater location yf and time lag τ are determined.

Figure 3.14 shows the comparison of the linear stability boundaries obtained from nu-

merical continuation in crosses and the analytical solution in solid lines. It is seen that

analytical method predicts the linear stability boundary well in all the three different

cases.

The amplitude and stability of the limit cycles near the Hopf point is obtained from

the slow-flow amplitude equation as derived in Section 3.4.2 using the method of mul-
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Figure 3.16: Comparison of numerical and analytical linear stability boundary for (a)
variation of heater power and time lag (b) for variation of damping coef-
ficient and time lag and (c) for variation of heater location and time lag.
Solid lines are analytical solutions and crosses are numerical solutions.
Common parameters are c1 = 0.1, c2 = 0.06, K = 1, yf = 0.3 and
τ = 0.2.

tiple scales. It is seen from Fig. 3.15 that the amplitudes of the limit cycles as predicted

by the method of multiple scales matches well with those calculated from numerical

continuation near the Hopf point. The match in the comparison of the limit cycle am-

plitudes is seen to deteriorate when the system is away from the Hopf point. This

deterioration is a result of the assumption given in (3.27), which states that the change

in the value of the parameter from its critical value is small.

The determination of fold point by harmonic balance identifies the region of bista-

bility analytically. Numerically, a fold point is identified from the bifurcation plot as

the point where the limit cycles gain stability. Comparison of the analytically obtained

fold points are plotted against numerical results in Fig. 3.16. The analytical results for

the fold point match well with the numerical results. The above comparisons show that

analytical approaches can be used to estimate bifurcation plots.
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Figure 3.17: Comparison of linear stability boundary between numerical (——) and ex-
perimental data from Matveev and Culick (2003) (+ + +) and Song et al.
(2006) (◦ ◦ ◦) for the simultaneous variation of non-dimensional power
(K) and time lag (τ ) when the heater location is (a) yf = 1/4 and (b)
yf = 5/8. The other system parameters are c1 = 0.028, c2 = 0.0001.

3.8 Comparison with experimental results

Matveev (2003b) obtained the stability boundaries for a horizontal Rijke tube and also

reported hysteresis at the stability boundary. Song et al. (2006) also obtained linear

stability boundary of a horizontal Rijke tube and matched their results with Matveev

and Culick (2003). In both the papers, the linear stability boundaries were obtained for

the simultaneous variation of power supplied to the heater P (in Watts) and mass flow

rate ṁ (in gm/sec) at different locations along the Rijke tube.

Changes in the power supplied to the heater P , causes variation of the tempera-

ture of the heater Tw. Increasing P increases the temperature of the wire and affects

K. Changes in the mass flow rate ṁ affect K by changing the mean flow velocity u0

through the Rijke tube. The non-dimensional heater power K and the mean flow ve-

locity u0 are related as given in Eqn. 3.11. This relation can be rewritten as below by

replacing the product of Mach number M and c0 to give u0 in the denominator.

K =
4(γ − 1)Lw

γu0p̄S
√

3
(Tw − T̄ )

√
πλCV u0ρ̄lc . (3.63)

Therefore, increasing ṁ increases u0 and decreases K. The effect of changing mass

flow rate affects both the non-dimensional power K and the time lag τ through changes

in the mean velocity. Variation in K occurs according to the Eqn. (3.63) while time
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Figure 3.18: Comparison of bifurcation plot for the variation of non-dimensional heater
power K between numerical models and experiment. ◦ are the unsta-
ble limit cycles and • are the stable limit cycles predicted by the cur-
rent model for (a) τ = 0.08 or ṁ = 2.75 gm/sec and (b) τ = 0.07 or
ṁ = 3.15 gm/sec. × are experimental data points obtained when power
was increased and ¤ are data points obtained when power was reduced for
c1 = 0.028, c2 = 0.0001 and yf = 0.25.

lag is related to the mean velocity through the quasi-steady approximation given by

Lighthill (1954).

τD =
0.2dw

u0

. (3.64)

The time lag obtained can be non-dimensionalised with the acoustic time scale l/c0 to

obtain the non-dimensional time lag as τND = τ as given below:

τND = τ =
0.2dw

u0

(c0

l

)
. (3.65)

Damping coefficients, c1 and c2 are calculated using the formula given in Matveev and

Culick (2003). The stability boundaries obtained at two different heater locations from

Matveev’s experiments are shown by the symbol ‘+’ in Fig. 3.17. The corresponding

numerical results from the present study are denoted with solid lines in the same figure.

Figure 3.17 (a) is the linear stability boundary when the heater is placed at one-quarter

of the duct length. At this location, the frequency close to the fundamental mode of the

duct becomes unstable. Figure 3.17 (b) shows the linear stability boundary when the

heater is placed at 5/8th of the duct length where the frequency close to the second mode

of the duct becomes unstable. In both the cases the linear stability boundary predicted

87



has the same trend as the experimental observations.

Matveev (2003b) also reported hysteresis at the stability boundary for different mass

flow rates. Results obtained from his experiments are shown using the symbols ‘×’ and

‘¤’ in Figs. 3.18 (a− b). In order for comparison with experimental data, the measure

chosen in the bifurcation plots is |p′|, the amplitude of the acoustic pressure. In the plot,

‘×’ indicate values acquired during increase of power and ‘¤’ correspond to data for

the decrease in power. The numerically calculated bifurcation plots for the same system

parameters are compared with the experimental data for two different mass flow rates.

In both the cases, the limit cycle amplitudes predicted are much lower than the observed

values.

The under prediction of limit cycle amplitudes can be attributed to the following

reasons. A mesh type electrical heater is used in experiments (Matveev, 2003b) while

the present model assumes the flow over a single cylinder. However, the heat transfer

characteristics of a single cylinder is significantly different from that of a mesh (Sen

et al., 2009). A constant speed of sound is assumed throughout the tube in the present

model. However, the presence of the heater causes a higher downstream temperature.

This effect could have a noticeable effect on linear stability and oscillation amplitude

by modifying the eigenfrequencies and mode shapes. Also, the present model assumes

significant nonlinear effects when the amplitude of the velocity fluctuations exceed one-

third of the steady state velocity. However, recent results for the nonlinear system iden-

tification of pulsatile flow over a cylinder (Selimefendigil et al., 2010) show that the

effect of nonlinearity in the heat release rate response occurs only when the perturba-

tion velocities exceed 1.5 times the steady state velocity. Due to the above reasons,

the limit cycle amplitudes predicted by Heckl’s correlation are lower than experimental

results.

The numerically predicted fold points are close to the experimental results while

the Hopf point is over predicted in Fig. 3.18 (a) and under predicted in Fig. 3.18 (b).

This shift in the Hopf point may be due to the presence of inherent noise in actual ex-

periments. Uncertainties in the parameters is seen to affect the bifurcation plot (Nair

et al.) while noise in the initial perturbation can cause sub-critical transition to insta-

bility (Waugh et al., 2010) in the present Rijke tube model. A factor which possibly
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contributes to the mismatch is related to the uncertainties in the values of steady state

parameters. The value of the damping coefficients (c1 & c2) used are currently calcu-

lated from the cold flow conditions (Matveev, 2003a). However, these values could be

different when the heater is turned on. Further investigations are required to determine

the variation of the damping coefficients with temperature.

Another reason for the mismatch of the present model could be the use of a single

time lag to obtain the response of the heater to velocity perturbations. Other investi-

gations of the Rijke tube model which include multiple time lags (Selimefendigil and

Polifke, 2010) exhibit higher limit cycle amplitudes. It is observed that in the present

study that even with simplifying assumptions, this model is seen to predict the trends in

the linear stability boundaries and the bifurcation plot of a Rijke tube which are reason-

ably close to the experimental results.

3.9 Summary

The dynamical behavior of a model for a horizontal Rijke tube has been studied us-

ing analytical and numerical methods. Linear stability boundaries for the simultaneous

variation of two parameters of the system are obtained. The nature of the Hopf bifurca-

tion along with estimates of the stability and amplitude of periodic states near the Hopf

point are obtained using the method of multiple scales. It is seen that only sub-critical

Hopf bifurcations are possible for the model considered to represent the behavior of

the Rijke tube. Estimates for the Fold bifurcation points are obtained by employing

the method of harmonic balance while the Hopf bifurcation points are obtained via the

classical eigenvalue analysis.

The nonlinear stability boundary and the regions of bistability where the system can

reach one or two possible asymptotic states are also obtained numerically. Using the

linear and nonlinear stability boundaries, regions of global stability, global instability

and regions of potential instability are identified. Interesting dynamical behavior such

as co-existing limit cycles, quasiperiodic behavior and period doubling route to chaos

are observed. Good agreement has been obtained between the results obtained from the
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analytical methods in this work with results from numerical continuation.

Linear stability boundaries and bifurcation plots obtained from numerical continu-

ation are compared with experimental data. Trends of the numerically obtained linear

stability boundaries are similar to experimental results. However, the numerical model

under predicts the amplitude of the stable limit cycles observed in experiments.

In summary, reduced order models of physical systems with explicit time delays

were studied in detail using analytical and numerical continuation methods to identify

stability boundaries, to obtain bifurcation plots and to examine their possible dynamical

behavior. This method of numerical continuation can be used in future for bifurcation

analysis of practical combustors to identify safe ranges of operation.
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CHAPTER 4

LINEAR & NONLINEAR ANALYSIS OF

THERMOACOUSTIC INSTABILITY IN A DUCTED

PREMIXED FLAME

4.1 Kinematic model of a ducted premixed flame

A model for the premixed flame can be obtained using a kinematic approach to track the

evolution of the flame. In this model, fluctuations in the surface area of the flame are

correlated with heat-release rate oscillations. Dowling (1999) used the front-tracking

equation to model the evolution of a premixed flame in the investigation of the ther-

moacoustic instability in a ducted premixed flame. The use of an evolution equation

to describe the premixed flame includes the transient effects; hence this approach is

adopted in the present investigation. A low Mach number laminar inviscid flow is

assumed and all reaction parameters are frozen by assuming a constant value for the

laminar flame speed. An axi-symmetric wedge flame is modeled as a kinematic flame

front which separates the unburnt mixture and the products of combustion (Kerstein

et al., 1988). The equations for the acoustic field are evolved together with the flame

front-tracking equation to model the thermoacoustic system.

Balasubramanian and Sujith (2008a) demonstrated that the presence of a fluctuat-

ing heat source renders the resulting thermoacoustic system non-normal. Non-normal

systems have non-orthogonal eigenvectors and can exhibit transient growth even in a

linearly stable system (Schmid and Henningson, 2001). Two possible routes to trig-

gering, have been demonstrated for thermoacoustic systems such as Rijke tube system

(Balasubramanian and Sujith, 2008a,c; Mariappan and Sujith, 2010b). The first route

is when a linearly stable system becomes unstable for a large amplitude initial condi-

tion. The other route for sub-critical transition to instability is from a small but finite

amplitude which causes non-normal transient growth.



The amount of transient growth is quantified using the disturbance energy of the

system. Disturbance energy is the energy associated with fluctuations that are super-

imposed over a base flow. Therefore, it should account for contributions from all the

constituent phenomena in the system. Kinetic energy was chosen as the natural mea-

sure to describe transient growth due to non-normality for incompressible fluid flows

(Schmid and Henningson, 2001). However, there has been no such consensus on the

appropriate expression for disturbance energy for compressible reacting flows. Previ-

ously, many expressions for the energy of a small disturbance in a viscous compress-

ible flow have been derived which include the energy due to entropy fluctuations (Chu,

1964) or the energy due to fluctuations in species concentrations (Giaque et al., 2006) as

discussed in detail in Chapter 1. There is a need therefore to identify a measure which

quantifies the disturbance energy in premixed flame-acoustic interaction.

The premixed flame front is modeled as a distribution of acoustic monopole sources

(Morse and Ingard, 1968; Dowling and Williams, 1983) and the dilatation due to un-

steady heat release rate is added to the acoustic energy to obtain the energy due to fluc-

tuations. This total energy is used to quantify the transient growth due to non-normality.

We investigate the effect of system parameters such as flame location and flame angle on

transient growth. We also examine the possibility of sub-critical transition to instability

from a small yet finite amplitude initial condition.

The evolution equations for a ducted premixed flame, form a set of parameterized

nonlinear ordinary differential equations. In this chapter, the parameters chosen to in-

vestigate stability boundaries and bifurcation plots of the system are the damping coef-

ficient c1, the heater location yf , the angle of the flame α, the burner to duct ratio b/a

and the equivalence ratio φ. Bounds of linear stability are obtained for the simultaneous

variation of two system parameters using classical linear stability analysis. Bifurcation

plots for the variation of system parameters such as damping coefficient c1 and the mean

flow velocity ū are obtained by the method of numerical continuation.

The organization of the rest of the chapter is as follows. In Section 4.2 the G-

equation governing the premixed flame model is discussed. Section 4.3 explains the

governing equations for the acoustic field within the duct. Section 4.4 explains the

modeling of the flame front in terms of a distribution of acoustic monopole sources. An
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Figure 4.1: Geometry of an axi-symmetric wedge flame stabilized on a wire. Here ξ̃′

is the displacement of the instantaneous flame shape from the unperturbed
flame shape, α is the flame angle, SL is the laminar flame speed and ˜̄u is the
mean flow.

expression for the total energy due to fluctuations in a premixed flame-acoustic system

is derived in Section 1.5. The equations governing the linear and nonlinear evolutions

are derived in Section 4.6. Sections 4.7 through 4.10 discuss the significant results while

Section 4.14 summarizes the important conclusions.

4.2 Combustion model

The laminar premixed flame is modeled as a thin wrinkled interface which separates the

unburnt mixture from the burnt products of combustion (Kerstein et al., 1988). In this

kinematic approach, the governing differential equation for the dynamics of premixed

flame is given by the G-equation. The scalar variable G can be related to the signed

distance of the flame front from its unperturbed location ξ̃′(X̃) along the direction Y as

shown in Fig. 4.1. The flame is along the axes (X̃, Ỹ ) stabilized in a duct with purely

axial velocity ũ along ỹ in the (x̃, ỹ) co-ordinate axes. The two co-ordinate systems are

related by the following transformations where α is the angle which the unperturbed

flame makes with the flow.

x̃ = X̃ sin α− ξ̃′ cos α and ỹ = X̃ cos α + ξ̃′ sin α . (4.1)
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Both the co-ordinates axes are retained, since even when the acoustic field in the duct is

along (x̃, ỹ) axis, the flame front is linearized about the (X̃, Ỹ ) axis. Using the above

transformations and decomposing the axial velocity into its mean and perturbed values,

the G-equation for the flame front can be rewritten as the front-tracking equation (Fleifil

et al., 1996). For the geometry of an axi-symmetric wedge flame stabilized on a wire

adapted from Schuller et al. (2003), the front tracking equation in the flame fixed co-

ordinate axes is as below:

∂ξ̃′

∂t̃
+ (˜̄u + ũ′) cos α

∂ξ̃′

∂X̃
− (˜̄u + ũ′) sin α = −S̃L

√√√√1 +

(
∂ξ̃′

∂X̃

)2

. (4.2)

Here the tildes denote dimensional values and primes indicate fluctuating quantities.

Also, (˜̄u + ũ′) cos α is the component of axial velocity parallel to the flame front, (˜̄u +

ũ′) sin α is the component of axial velocity perpendicular to the flame front and SL is

the laminar flame speed.

The effect of all reaction parameters is distilled into the laminar flame speed, which

is considered to be only a function of the equivalence ratio of the unburnt mixture. A

methane-air flame is considered and for a given equivalence ratio φ the laminar flame

speed SL is obtained using the following relation where J = 0.6079 m/s (You et al.,

2005):

SL(φ) = J
(
φ−2.554exp

[−7.31(φ− 1.23)2
])

. (4.3)

Equation (4.2) is nonlinear and describes the combustion response of a premixed flame

when subjected to a velocity perturbation. Linearising the equation, we obtain

∂ξ̃′

∂t̃
= ũ′ sin α− ˜̄u cos α

∂ξ̃′

∂X̃
. (4.4)

The length scale used for non-dimensionalisation is the length of the flame b/ sin α,

where b is the radius of the burner. The velocity scale chosen is the mean velocity of

the flow ū. The time scale for non-dimensionalisation is derived from the length and

velocity scales as shown below in Eqn. (4.5) to derive the non-dimensional time in the
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combustion scale tc.

y = ỹ sin α/b; ū = ˜̄u/˜̄u = 1; tc = t̃/(b/ū sin α) , (4.5)

The non-dimensional linear (4.6) and nonlinear (4.7) front tracking equations are ob-

tained as given below:

∂ξ′

∂tc
= u′ sin α− cos α

(
∂ξ′

∂X

)
, (4.6)

∂ξ′

∂tc
= (1 + u′) sin α− (1 + u′) cos α

(
∂ξ′

∂X

)
− sin α

√
1 +

(
∂ξ′

∂X

)2

. (4.7)

The above equations are first order in time and space and therefore require an initial

condition and a boundary condition for their solution. The flame is assumed to be

anchored at the base and the other end is left free to move. The resulting system can be

evolved from a prescribed initial condition using a numerical integration scheme.

The shape function ξ′(X, t) is smooth for small amplitude perturbations in the linear

regime. Therefore in the linear regime, the gradient term is expanded using a first

order backward difference formula. However the shape function ξ′(X, t) can become

significantly distorted and can even display a discontinuity in slope at high perturbation

amplitudes (Dowling, 1999). Therefore, it becomes necessary to calculate the spatial

derivative of the shape function to high accuracy using a high resolution method. The

high resolution scheme used to capture the highly oscillatory solution of the G-equation

is the weighted essentially non-oscillatory (WENO) scheme of the third order (Schuller

et al., 2003; Jiang and Shu, 1996). The implementation details of the WENO scheme are

given in Appendix C. The above formulation enables us to achieve fifth order accuracy

in smooth regions and third order accuracy in the discontinuous regions for the spatial

derivative of the flame shape.

The flame front area is calculated for the geometry of the flame front from its instan-

taneous position given by the nonlinear and linearized equations. For the geometry of

an axi-symmetric wedge flame stabilized on a wire, as given in Fig. 4.1, the flame shape

at the unperturbed state can be approximated by an inverted cone. The nonlinear and
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linear expressions for total surface area of perturbed flame front are given as follows:

A(tc) = 2π

X=1∫

X=0

(X sin α− ξ′ cos α)

√
1 +

(
∂ξ′

∂X

)2

dX , (4.8)

A(tc) = 2π

X=1∫

X=0

(X sin α− ξ′ cos α)dX . (4.9)

The linear relation for the change in the surface area of the flame due to change in

the flame shape is obtained with the relation (4.9). Dimensionally, this relation can be

written as

Ã(tc) =
2πb2

sin2 α

X=1∫

X=0

(X sin α− ξ′ cos α)dX . (4.10)

The unperturbed flame shape is obtained from the above relation when ξ′ = 0 such

that the dimensional surface area of the unperturbed flame ˜̄A(tc) is given by the follow-

ing expression:

˜̄A(tc) =
2πb2

sin2 α

X=1∫

X=0

X sin αdX =
πb2

sin α
. (4.11)

Retaining the expression with the integral and subtracting it from the expression for the

total surface area of the flame given in Eqn. (4.10), we obtain the linear expression for

the fluctuating surface area as

Ã′(tc) =
−2πb2 cos α

sin2 α

X=1∫

X=0

ξ′dX . (4.12)

Following the kinematic flame model of Fleifil et al. (1996) with constant flame

speed and no equivalence ratio fluctuations, the evolution of heat release fluctuations

imitates the evolution of the area ratio such that ˙̃q′/ ˙̄̃q = Ã′/ ˜̄A, or as given below:

˙̃q = ˙̄̃q + ˙̃q′ = ρ0SL∆qR( ˜̄A + Ã′) . (4.13)

Here, ρ0 is the density of the unburnt mixture in kg/m3. At a given equivalence ratio φ,

SL(φ) is the laminar flame speed measured in m/s and 4qR(φ) is the heat released per

unit mass of the mixture measured in J/kg. The values of SL and4qR are obtained for
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a methane-air mixture from You et al. (2005) as given below.

∆qR(φ) =





2.9125×106φ
1+0.05825φ

, φ ≤ 1

2.9125×106

1+0.05825φ
, φ > 1

, J/kg. (4.14)

The fluctuating part of dimensional heat release rate can be calculated from the fluctuat-

ing surface area using the relation given in Eqn. (4.13) for a specified equivalence ratio.

Thus,

˙̃q′ = ρ0SL∆qRÃ′(t) =
−2π cos α ρ0SL∆qRb2

sin2 α

X=1∫

X=0

ξ′dX
′
, . (4.15)

4.3 Model for the coupled thermoacoustic system

The coupled thermoacoustic system considered is as given in Fig. 4.2. It consists of the

acoustic field within a duct open at both ends and a compact premixed flame located

within it. A laminar inviscid flow with Mach number M approaching zero is assumed

(Nicoud and Wieczorek, 2009). In order to simplify the analysis, a constant density

assumption is made such that the mean density ρ0 and the speed of sound in the unburnt

mixture c0 are assumed to be constant throughout the duct. The flame is treated as a

compact source and the heat release rate distribution along the duct can be represented

by a Dirac-delta function. The location of the flame is the point of attachment of the

flame front to the anchoring wire; i.e. at ỹ = ỹf .

The acoustic wave propagation on either side of the compact source within the duct

can be assumed to be linear even when the nonlinear dependence of the heat release

rate on velocity fluctuations is retained. This is because the amplitudes of the acoustic

pressure fluctuations in the present thermoacoustic system are not significant enough to

introduce nonlinear gas dynamic effects (Dowling, 1997). Below the cut-on frequency,

only the axial modes of sound propagate in the duct. Therefore, the acoustic quantities

are assumed to vary only axially. The non-dimensional acoustic equations for momen-

tum and energy used in the present analysis are

γM
∂u′

∂t
+

∂p′

∂ya

= 0 , (4.16)
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Figure 4.2: Geometry of the coupled premixed flame thermoacoustic system. Here L is
the length of the duct, (b/a) is the ratio of burner to duct radius and ỹf is
the flame location along the length of the duct.

∂p′

∂t
+ γM

∂u′

∂ya

= (γ − 1)
˙̃q′f

ρ0c3
0

δ(ya − yfa) . (4.17)

These equations have been non-dimensionalized using the scales of non-dimensionalisation

given below (Balasubramanian and Sujith, 2008a):

ya = ỹ/L; u = ũ/ū; t = t̃c0/L; p = p̃/p̄; q̇′f = ˙̃q′f/ρ0c
3
0; δ = Lδ̃ . (4.18)

where γ is the ratio of specific heats, p′ is the non-dimensional acoustic pressure, u′

is the non-dimensional acoustic velocity, ˙̃q′f is the heat release rate fluctuations aver-

aged over the cross-sectional area of the duct, L is the duct length and the compact

heat source is represented as the Dirac-delta function δ(ya − yfa). In this chapter, the

super-script tilde denotes dimensional quantities and quantities without tilde are non-

dimensional. The sub-script ’a’ denotes that the variable has been non-dimensionalized

with respect to the acoustic scale.

The heat release rate fluctuation averaged over the cross sectional area of the duct

(ÃCS = πa2) is given as ˙̃q′f = ˙̃q′/ÃCS . Therefore the expression for the fluctuating heat

release rate per unit area for the linearized model can be written using (4.15) as

˙̃q′f =
ρ0SL∆qRÃ′(t)

ÃCS

= −2 cot α ρ0SL∆qR

(
b2

a2 sin α

) X=1∫

X=0

ξ′dX . (4.19)

Defining the constant Ω = − (L/ρ0c
3
0) (2 cot αρ0SL∆qR) (b2/a2 sin α) the equation

for the non-dimensional heat release rate fluctuations per unit area of the duct can be
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written as given below:

q̇′f =

(
L

ρ0c3
0

)
˙̃q′f = Ω

X=1∫

X=0

ξ′dX . (4.20)

The acoustic equations for momentum and energy are partial differential equations.

They can be converted into a set of ordinary differential equations by the method

of Galerkin expansion (Meirovitch, 1967; Zinn and Lores, 1971). In the method of

Galerkin expansion, the acoustic variables of velocity and pressure are expanded in

terms of a set of basis functions which satisfy the boundary conditions for the acoustic

field. In the present case, they correspond to the boundary conditions of a duct which is

open at both ends as:

u′ =
N∑

j=1

cos (jπya) ηj (t) and p′ = γM

N∑
j=1

sin (jπya)

(−η̇j

jπ

)
(t) . (4.21)

A mode dependent damping is introduced as given by Matveev (2003a) in the acous-

tic energy equation, where the expression for the damping coefficient ζj is given by

ζj =
1

2π

(
c1j + c2

√
1

j

)
, (4.22)

where c1 is representative of the losses due to radiation from the open ends and c2 rep-

resents the acoustic boundary layer losses (Sterling and Zukowski, 1991). The resulting

system of ordinary differential equations which describes the evolution of the acoustic

field for the system with damping is as given below:

dηj

dt
= −jπ

(−η̇j

jπ

)
, (4.23)

d

dt

(−η̇j

jπ

)
= jπηj − 2ζjjπ

(−η̇j

jπ

)
+

2(γ − 1)

γM
q̇′f (t) sin (jπyfa) . (4.24)
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4.4 Flame front as a distribution of monopole sources

The flame front can be represented as a source of sound using the acoustic analogy

(Lighthill, 1952). Unsteady heat addition from the flame at constant pressure causes a

corresponding unsteady expansion of the fluid. Across a one-dimensional flame with

area Af , this dilatation term leads to a velocity jump of δu′f resulting in an instanta-

neous value of volume flow rate Afδu
′
f (Chu and Kovasznay, 1958; Wu et al., 2003).

This dilatation can be represented as the sum of source strengths of a distribution of

monopole sources of sound, with source strength S per unit length S along the flame

front (Morse and Ingard, 1968; Dowling and Williams, 1983; Howe, 1998). Thus, the

laminar flame front is represented by a distribution of monopole sources of sound (van

Kampen, 2006).

The flame front is discretised into P flame elements each of equal length 4X̃ , each

of which represents an acoustic monopole source of strength S̃i4X̃ . The monopole

strength per unit length S̃i can be non-dimensionalised as follows:

Si =
1

γūL
S̃i . (4.25)

In the rest of this section, we derive the energy due to heat release rate fluctuations of

the flame front in terms of monopole strength averaged over the cross sectional area

of the duct. As the initial step, Eqn. (4.19) can be rewritten to linearly relate the local

flame displacement to the non-dimensional heat release rate fluctuation per unit area as

given below:

q̇′f =
P∑

i=1

q̇′fi = Ω
P∑

i=1

fiξ
′
i4X , (4.26)

given that we denote Ω as defined after Eqn. (4.19) and are the weight factors corre-

sponding to the trapezoidal integration formula as given below:

fi =





1
2
, i = 1andP,

1, i 6= 1orP.
(4.27)

The integration of the acoustic equation for energy given by Eqn. (4.17) across the

heat source relates the acoustic velocity gradient to the heat source as given below in
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Eqns. (4.28) to (4.32):

y+
f∫

y−f

(
∂p′

∂t
+ γM

∂u′

∂ya

)
dVc =

y+
f∫

y−f

(γ − 1)q̇′fδ(ya − yfa)dVc . (4.28)

Here y−f and y+
f are the locations just upstream and downstream of the flame front and

the sub-script c denotes the combustion zone. The contribution from the acoustic pres-

sure term vanishes for a compact source as dVc → 0. Applying Gauss divergence theo-

rem to the acoustic gradient term, we can re-write the left hand side of the Eqn. (4.28)

as given below:

γM

y+
f∫

y−f

(
∂u′

∂ya

)
dVc = γM

∫

Sc

(u′ · n̂) dSc . (4.29)

The surface integral is evaluated over a cylindrical area Sc, which encloses the flame

and whose lateral surface coincides with that of the duct. Here, n̂ denotes the outward

normal from the surface.

As the velocity field is assumed to be one dimensional, the contribution to the in-

tegral from the lateral surface vanishes identically. Further, the acoustic velocity is

assumed to be uniform across the cross-sectional area of the duct, consistent with a one-

dimensional approximation. Therefore, the contribution to this surface integral from the

left and right faces of the cylindrical area are (−ACSu′f−) and (ACSu′f+) respectively

as given in the right hand term in (4.30),

(γ − 1)

y+
f∫

y−f

q̇′fδ(ya − yfa)dVc = γMACS

(
δu′f

)
. (4.30)

Using the one-dimensional approximation, the volume integral in the left hand side term

of (4.30) is replaced as the product of the cross-sectional area ACS times an integral

along the length of the duct,

(γ − 1)

δ+∫

δ−

q̇′fδ(ya − yfa)dVc = (γ − 1)ACS q̇′f |ya=yfa
. (4.31)
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Comparing the right hand sides of (4.30) and (4.31), the jump in acoustic velocity across

the heat source δu′f can be related to the fluctuations in heat release rate as given below:

δu′f =
(γ − 1)

γM
q̇′f |ya=yfa

. (4.32)

The jump in acoustic velocity δu′fi across the ith monopole can be related in terms

of the monopole strength Si4X averaged over the cross sectional area of the duct as

given below (Morse and Ingard, 1968; Dowling and Williams, 1983; Howe, 1998):

δu′fi =
Si4X

ACS

, (4.33)

which we will use later in Section 4.5.2 to calculate the energy due to fluctuations in

heat release rate.

4.5 Energy due to fluctuations in a premixed flame-acoustic

system

4.5.1 Energy in the acoustic field

The acoustic energy can be written in terms of the acoustic velocity and pressure as

given below (Reinstra and Hirschberg, 2008):

Ẽa(t) =
1

2

∫

Ṽa

[(
ρ0ũ

′2) +

(
p̃′2

ρ0c2
0

)]
dṼa =

1

2
ACSL

ya=1∫

ya=0

[(
ρ0ũ

′2) +

(
p̃′2

ρ0c2
0

)]
dya .

(4.34)

Non-dimensionalizing the above expression with the kinetic energy of the steady-state

flow, 1
2
ρ0ū

2ACSL, we obtain the expression for non-dimensional acoustic energy as

below:

Ea(t) =
Ẽa(t)

1
2
ρ0ū2ACSL

=

y=1∫

y=0

[
u′2 +

(
p′

γM

)2
]

dya . (4.35)

We expand the acoustic variables in terms of the basis functions as given in Eqn. (4.21)

and integrate over the acoustic domain. Making use of their orthogonality property, the
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expression for acoustic energy can be modified into the following equation:

Ea(t) =
1

2

N∑
j=1

[
ηj(t)

2 +

(−η̇j(t)

jπ

)2
]

. (4.36)

4.5.2 Energy due to fluctuations in heat release rate

In Section 4.4, the unsteady heat addition at the flame front was related to unsteady ex-

pansion of the fluid across it. The energy due to dilatation at the monopole distribution

Ẽf (Morse and Ingard, 1968) is written in the dimensional form as given below:

Ẽf (t) =
1

2

∫

Ṽa

[
ρ0

P∑
i=1

(
δũ′fi

)2

]
dṼa =

1

2
ACSL

ya=1∫

ya=0

[
ρ0

P∑
i=1

(
δũ′fi

)2

]
dya . (4.37)

Non-dimensionalizing the above the kinetic energy of the steady-state flow 1
2
ρ0ū

2ACSL,

we obtain the non-dimensional expression for the energy of the monopole distribution

as

Ef (t) =
Ẽf (t)

1
2
ρ0ū2ACSL

=
P∑

i=1

(δu′fi)
2 (4.38)

Using Eqn. (4.33), we can rewrite the expression for energy Ef in terms of monopole

strengths to obtain,

Ef (t) =
P∑

i=1

[
Si(t)4X

ACS

]2

. (4.39)

The dilatation due to the presence of a flame front is modeled using a monopole

distribution. The contribution to fluctuating energy due to unsteady heat release rate

can now be expressed in terms of the monopole strength averaged over the cross sec-

tional area of the duct. Note that the expression for the fluctuating energy as derived in

Eqn. (4.39) is not the acoustic power of a distribution of monopole sources (Morse and

Ingard, 1968).

The total energy E(t) due to fluctuations in a premixed flame-acoustic system in-

cludes contributions from the acoustic energy and the energy of the monopole distri-

bution arising from the heat release rate fluctuations. Thus E(t) can be expressed as
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E(t) = Ea(t) + Ef (t) =
N∑

j=1

1

2

[
ηj(t)

2 +

(−η̇j(t)

jπ

)2
]

+
P∑

i=1

[
Si(t)4X

ACS

]2

. (4.40)

4.6 Evolution equations for a ducted premixed flame

The time scale used in the non-dimensional front tracking equation is (tc = b/ū sin α)

different from the time scale used for the acoustic equations for momentum and en-

ergy (t = L/c0). In order to evolve both the equations using a single time marching

technique, the non-dimensional front tracking equation is non-dimentionalised with the

acoustic time scale. Convertion of the one time scale to another is given as

(
L

c0

ū sin α

b

)
∂

∂tc
=

∂

∂t
,

such that the front tracking equation can be modified as given in Eqns. (4.43) and (4.48).

Also, the flame front is discretised into P different flame elements along its length

such that the partial differential equation that governs the flame front evolution can be

converted into P ordinary differential equations.

4.6.1 Linear analysis

The coupled system of equations for the premixed flame thermoacoustic system under

the linear approximation can be written as given below.

dηj

dt
= −jπ

(−η̇j

jπ

)
, (4.41)

d

dt

(−η̇j

jπ

)
= jπηj − 2ζjjπ

(−η̇j

jπ

)
+

2(γ − 1)

γM
q̇′f (t) sin (jπyfa) , (4.42)

dξ′i
dt

=

(
Lū sin2 α

c0b

) N∑
j=1

cos(jπyfa)ηj −
(

Lū sin α cos α

c0b

) (4ξ′

4X

)

i

. (4.43)

Here, the gradient term (4ξ′/4X)i in the front tracking equation in expanded using a

first order backward difference formula as discussed in Section 4.2.

Equation (4.41) is retained as such, while (4.42) is rewritten in terms of the strength
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of monopole distribution as given in Eqn. (4.44):

d

dt

(−η̇j

jπ

)
= jπηj − 2ζjjπ

(−η̇j

jπ

)
+
√

2 sin (jπyfa)
P∑

i=1

Hi . (4.44)

With Hi representing the monopole strength averaged over the cross-sectional area of

the duct and defining the constants θ1 and θ2,

Hi =

(
Si4X

√
2

ACS

)
,

θ1 =

(
(γ − 1)Ω4X

√
2

γM

)(
Lū sin2 α

c0b

)
and θ2 =

(
Lū sin α cos α

c0b4X

)
.

(4.45)

the flame front evolution (4.43) is converted to Eqn. (4.46) using relations (4.33) and

(4.26):
dHi

dt
= θ1

N∑
j=1

cos(jπy)ηj − θ2

(
Hi −H(i−1)

)
. (4.46)

The state vector χ = [η1 (−η̇1/π) η2 (−η̇2/2π) · · · (−η̇N/Nπ) H1 H2 · · · HP ]T

is defined such that the square of the L2 norm of the state vector is proportional to the

energy of fluctuations E(t). The ratio of the squares of the L2 norm of the state vector at

time t to that at time t = 0, gives the normalized energy of fluctuations as given below:

E(t)

E(0)
=

(
N∑

j=1

[
ηj(t)

2 +
(
−η̇j(t)

jπ

)2
]

+
P∑

i=1

Hi(t)
2

)

(
N∑

j=1

[
ηj(0)2 +

(
−η̇j(0)

jπ

)2
]

+
P∑

i=1

Hi(0)2

) . (4.47)

Thus the set of linear equations which describes the evolution of a premixed flame

thermoacoustic system are given by the Eqns. (4.41), (4.44) and (4.46).
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4.6.2 Nonlinear analysis

The nonlinear partial differential equation which governs the evolution of the flame

front expressed in the acoustic time scale is

∂ξ′

∂t
=

(
Lū sin2 α

c0b

) 
1 + u′f −

√
1 +

(
∂ξ′

∂X

)2

−

(
Lū sin α cos α

c0b

)
(1+u′f )

(
∂ξ′

∂X

)
.

(4.48)

The discretised set of equations for the evolution of the flame front can be written as

below for every i = 1, 2, . . . , P , where P is the number of points along the flame front:

dξ′i
dt

=

(
Lū sin2 α

c0b

) 
1 + u′f −

√
1 +

(
∆ξ′i
∆X

)2

−

(
Lū sin α cos α

c0b

)
(1+u′f )

(
∆ξ′i
∆X

)
.

(4.49)

Here (∆ξ′i/∆X) is the fifth-order accurate approximation of the spatial derivative us-

ing the WENO scheme given in Appendix C. The governing equations for the nonlin-

ear system are the linearized acoustic equations for momentum and energy (4.41) and

(4.42) and the nonlinear evolution equation for the premixed flame given in (4.49). In

Eqn. (4.42), the heat release rate is substituted in terms of the flame displacement as

q̇′f =
SL4qR

c3
0


 2

sin α

∫ X=1

X=0

(X sin α− ξ′ cos α)

√
1 +

(
∂ξ′

∂X

)2

dX − 1


 . (4.50)

Two measures are chosen to check for the convergence with increasing number of

acoustic modes and number of flame elements. The number of acoustic modes is var-

ied in steps of one and the number of flame elements is varied in steps of 25 and the

following two relative changes are calculated. The relative changes due to variation of

the number of acoustic modes N are given as below. The relative change in maximum

transient growth Φ1 and the relative change in the average acoustic velocity at the flame

for the optimal initial condition Φ2 are

Φ1 =
Gmax(N) −Gmax(N−1)

Gmax(N)

and Φ2 =
u′f(N) − u′f(N−1)

u′f(N)

.
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Figure 4.3: (a) Relative change in the average value of acoustic velocity at the flame
for the optimal initial condition u′f as Φ1 ’− − −’ and relative change
in maximum transient growth Gmax as Φ′

2’−−−−−’ with the number of
acoustic modes N and 500 flame elements, (b) Relative change in u′f as
Ψ1 ’− − −’ and relative change in Gmax as Ψ2 ’−−−−−’ with the num-
ber of flame elements P and 100 acoustic modes at α = 100, yf = 0.1,
c1 = 1.5× 10−2, c2 = 1.5× 10−3, b/a = 0.5, φ = 1, SL = 0.4129 m/s and
4qR = 2.7522 × 106 J/Kg. In both the figures, ’− · − · − · −’ is the level
indicating a relative change of 3%.

Relative changes due to variation in the number of flame elements P are as given below.

The relative change in maximum transient growth Ψ1 and the relative change in the

average acoustic velocity at the flame for the optimal initial condition Ψ2 are

Ψ1 =
Gmax(P ) −Gmax(P−25)

Gmax(P )

and Ψ2 =
u′f(P ) − u′f(P−25)

u′f(P )

.

Figure 3 (a) plots the variation of Φ1 and Φ2 with change in the number of acoustic

modes N for the case with system parameters α = 100, yf = 0.1, c1 = 1.5 × 10−2,

c1 = 1.5 × 10−3, b/a = 0.5, φ = 1, SL = 0.4129 m/s and 4qR = 2.7522 × 106 J/Kg.

Figure 3 (b) plots the relative changes Ψ1 and Ψ2 for variation in the number of flame

elements P for the same case. It is seen that the relative changes in both the maximum

transient growth and the acoustic velocity at the flame location for the optimal initial

condition are less than 3% for N = 100 acoustic modes and P = 500 flame elements.

Further, with 100 Galerkin modes retained in the expansion of acoustic variables, the

jump in acoustic velocity across the heat source is sufficiently well resolved as shown in

Fig. 7 (a). With these choices, the set of ordinary differential equations given by (4.41),

(4.44) and (4.46) are evolved in time using the matrix exponential of the linear operator
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Figure 4.4: (a) Evolution of the ratio of energy at an instant E(t) to the initial energy
E(0) in the acoustic time scale t, for the optimal initial condition and (b)
Pseudospectra of the linearized matrix of a linearly stable system with α =
100, yf = 0.08, c1 = 0.135, c2 = 1.5 × 10−2, b/a = 0.5, φ = 1, SL =
0.4129 m/s and 4qR = 2.7522× 106 J/Kg.

(Hirsch et al., 2004) for linear analysis. In the nonlinear analysis, the set of equations

given by (4.41), (4.42) and (4.49) are evolved with a time marching technique using

Runge-Kutta third order scheme with TVD property (Jiang and Shu, 1996) with a CFL

number of 0.01.

4.7 Quantification of transient growth

In addition to the variables for acoustic velocity and pressure, the state vector of the

self evolving system consists of variables for the strengths of the monopole sources

associated with the flame elements. The measure chosen in this chapter to quantify

transient growth contains contributions from the dilatation resulting from the fluctuating

heat release rate in addition to the classical acoustic energy. The square of the L2 norm

of the state vector at time t gives the net energy of fluctuations E(t). The fluctuation

energy is normalized with its value at time t = 0 as given in Eqn. (4.47).

This normalized energy when maximized over all possible initial conditions and

over all times is called maximum growth factor Gmax and it represents the maximum

possible amplification for the fluctuating energy of a given system. The optimal initial

condition for maximum transient growth in a linear system can be obtained by singu-

lar value decomposition of the operator governing the linearized system. Evolution of
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the normalized energy for a linearly stable case from the corresponding optimal ini-

tial condition is shown in Fig. 4.4 (a). The system configuration chosen is the same as

for Fig. 4.3. The optimal initial condition, maximized over all time, is observed to un-

dergo a transient amplification of 66.7 times the initial energy and attain this maximum

amplification at tmax = 3.3.

For a non-normal system, the evolution of the system at finite time cannot be ade-

quately characterized by the eigenvalues of the linearized system. In such cases, if B is

the linear operator of the system, the eigenvalues enforce a bound on the growth factor

‖ exp(tB)‖ only for t → ∞. The normalized net energy of fluctuations is given by the

square of the growth factor. Pseudospectra of the linearized operator can be analyzed to

obtain the magnitude of transient amplification of energy of the fluctuations. The time

scale over which transient growth occurs can also be estimated from the pseudospectra

of the linearized matrix.

The ε-pseudospectrum for the linear operator B is a set of points in the complex

plane which are the eigenvalues of a perturbed matrix (B + T ), such that the ran-

dom perturbation T to the operator satisfies the condition ‖T‖ < ε. On a given ε-

pseudospectrum, the pseudospectral abscissa σε gives the location of the point on the

real axis with the largest value. If the value of σε is positive, such that (σε(B)/ε) > 1,

then transient growth is indicated. The ratio of (σε(B)/ε) maximized over all ε gives

the minimum value of transient growth possible. A lower bound on the magnitude of

the transient growth can be given in terms of the Kreiss constant κ(B) from the Kreiss

matrix theorem as given below (Trefethen and Embree, 2005):

sup
t≥0

‖etB‖ ≥ sup
ε>0

σε(B)

ε
= κ(B) . (4.51)

The upper bound on transient growth ϕ(B) for a matrix of dimension (2N + P ) is also

given by the Kreiss matrix theorem in terms of κ(B) as below:

‖etB‖ ≤ e(2N + P )κ(B) = ϕ(B) . (4.52)

In the case of a linearly unstable system, when z′ is the location of the eigenvalue with

the largest positive real part, exponential growth occurs within a time span of 1/Re(z′).
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Figure 4.5: Variation of Gmax with yf for the system with α = 100, c1 = 1.5 × 10−2,
c2 = 1.5 × 10−3, b/a = 0.5, φ = 1, SL = 0.4129 m/s and 4qR =
2.7522× 106 J/Kg. Blank spaces indicate configurations for which the sys-
tem is linearly unstable.

In the case of a linearly stable system, the ε-pseudoeigenvalue of the system with the

largest value determines the time span over which transient growth occurs. When the

pseudospectral abscissa σε is the ε-pseudoeigenvalue of the system with the largest real

part, the system experiences a transient growth of the order of over a time span 1/σε

(Trefethen and Embree, 2005).

Thus, the pseudospectra of the linear matrix give us bounds for the evolution of

normalized energy (Et/E0) at finite time. For the case of a premixed flame with φ = 1

and flame angle of α = 100, which is stabilized at yf = 0.08, the pseudospectra of

the system are given in Fig. 4.4 (b). We see that the pseudospectra spill onto the right

half plane. The perturbation amplitude ε = 1 gives a ratio of ε/||L|| = 7.04 × 10−4,

which implies that the perturbations are very small compared to the norm of the linear

operator. The pseudospectrum corresponding to ε = 1 is seen to protrude by σ1 = 5

units into the right half plane. The ratio of the protrusion of the pseudospectra to the

corresponding perturbation amplitude is greater than one, indicative of transient growth.

This ratio when maximized over all perturbation amplitudes gives the Kreiss constant

for this case as κ(B) = 6.4, with σ = 0.64 and ε/||L|| = 7.04 × 10−5 for ε = 0.1.

The Kreiss constant sets the lower bound for transient amplification of energy to be

κ2(B) = 41 from pseudospectra. The upper bound for transient growth is given as

ϕ(B) = 7.7× 104. The maximum value of normalized energy amplification is 66.7, as

shown in Fig. 4.4 (a), which falls within the bounds estimated from pseudospectra. The
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Figure 4.6: Variation of Gmax with α for the system with yf = 0.1, c1 = 1.5 × 10−2,
c2 = 1.5× 10−3, b/a = 0.5, φ = 1, SL = 0.4129 m/s and 4qR = 2.7522×
106 J/Kg.

estimated time scale for transient growth from pseudospectra is tmax = 1.6, which is of

the same order as the computed time for maximum growth, tmax = 3.3.

Variation of Gmax with system parameters is obtained to quantify the effect of sys-

tem parameters on the non-normality of the system. Significant system parameters con-

sidered are flame location yf and flame angle α. The variation of Gmax with the location

of the flame is shown in Fig. 4.5 for a flame angle of α = 100. It is seen that Gmax in-

creases with increase in yf till the half duct length. The blank spaces in the distributions

in Fig. 4.5 are configurations for which the system is linearly unstable. The system is

linearly unstable for locations of the flame beyond the half duct length. The dependence

of the growth factor on the flame angle is as shown in Fig. 4.6 for yf = 0.1. The tran-

sient growth observed is stronger for elongated flames than for flatter flames. When α

is small, i.e. for elongated flames, the convective term dominates the linear evolution

of the flame front as given in Eqn. (4.4). Increased non-normality was observed with

increased advection in the context of ducted diffusion flames by Balasubramanian and

Sujith (2008a), who reported that the maximum growth factor was seen to increase with

an increase in the Peclet number.
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4.8 Influence of internal flame dynamics on the linear

evolution of the ducted premixed flame

In addition to the acoustic equations for momentum and energy, the dynamical system

described in Section 4.6.1 includes the evolution equation for the flame front in terms

of the monopole strength averaged over the cross-sectional area of the duct. If the

flame front is thought of as consisting of a number of small flame elements, the flame

displacements at these points represent a large number of additional degrees of freedom

which we refer to as the internal degrees of freedom of the flame front or internal flame

dynamics. The linearized system of equations from (4.41), (4.44) and (4.46) can be

written in matrix form as

dχ

dt
= Bχ =


 C2N×2N D2N×P

EP×2N FP×P




(2N+P )×(2N+P )

χ(2N+P )×1 . (4.53)

Here, χ is the state vector and B is the operator governing the linearized thermoacoustic

system as expanded in Appendix D. The size of the linearized operator B is (2N +P )×
(2N + P ) for N number of acoustic modes and P number of points along the flame.

The sub-matrix C is the linearized operator which governs the evolution of acoustic

modes in the absence of a heat source and has the size (2N × 2N ). Thus the self

evolving thermoacoustic system has more degrees of freedom than just the number of

acoustic modes. The sub-matrix D contains the effect of flame dynamics on the acoustic

modes and E represents the acoustic driving term in the evolution for the monopole

sources. The sub-matrix F represents the interaction between the monopole sources

that represent the flame front.

The optimal initial condition can be obtained using singular value decomposition

(SVD) of the linear operator of the system (Schmid and Henningson, 2001). The

optimal initial condition was obtained for the case examined in Figs. 4.3 and 4.4. In

the kinematic model considered, the heat release rate fluctuations are correlated to the

monopole strength distribution along the flame. The optimal initial condition has sig-

nificant projections onto the monopole strength distribution. The evolution from the

optimum initial condition at different instances of time as seen through the projections
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Figure 4.7: (a) Acoustic velocity field, (b) Acoustic pressure field and (c) Flame shape
for evolution of optimal initial condition maximized over all time, with
Et(0) = 1 × 10−4 for α = 100, yf = 0.08, c1 = 0.135, c2 = 1.5 × 10−2,
b/a = 0.5, φ = 1, SL = 0.4129 m/s and 4qR = 2.7522 × 106 J/Kg where
· · · · · · is the unperturbed state; −−−−− is distribution for the optimal ini-
tial condition and −−−− is distribution at t = tmax = 3.3.

on acoustic velocity, pressure and the displacement of the flame shape are shown in

Fig. 4.7. The acoustic velocity and pressure distributions along the duct and the dis-

placement of the flame shape for the optimal initial condition at time instances t = 0

and at time t = tmax = 3.3 are shown in Fig. 4.7 (a) to Fig. 4.7 (c). The acoustic veloc-

ity distribution in Fig. 4.7 (a) shows a jump while the pressure distribution in Fig. 4.7

(b) is continuous across the flame location.

Inclusion of the monopole strengths in the state space increases the number of de-

grees of freedom in the system from (2N × 2N ) to (2N + P )× (2N + P ). Tradition-

ally, thermoacoustic instability has been analyzed in terms of an acoustic model which

is driven by combustion. In this traditional approach, a time lag model (Schuermans

et al., 2004; Noiray et al., 2006) or a lumped model (Annaswamy et al., 1997) has been

used to model the heat release rate fluctuations. When the flame front is modeled with

a time lag model or as lumped model, it is not possible to prescribe an initial condition

for the flame shape (monopole source strength distribution).

However, the coupled system can have initial perturbations both in the acoustic vari-
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ables as well as the position of the flame front. Therefore, in order to include the pos-

sibility of an initially perturbed flame shape (i.e., an initial non-zero monopole strength

distribution), the variables corresponding to the monopole source strengths must be in-

cluded in the state variables of the system. Inclusion of the monopole source strength

variables in the state space retains the internal degrees of freedom of the flame front.

This is particularly significant as the ability to predict transient growth in a non-normal

system is affected by the degrees of freedom of the model (Trefethen and Embree,

2005).

4.9 Sub-critical transition to instability

A system that is predicted to be stable by classical linear stability theory can become

nonlinearly unstable for large amplitudes of initial perturbation and reach a limit cycle

oscillation. This type of stability transition depending upon the amplitude of the initial

perturbation is called sub-critical transition to instability. The evolutions of acoustic

velocity for the linearized and nonlinear systems are compared in Fig. 4.8 (a&b) for the

system configuration with α = 100, yf = 0.2, c1 = 2× 10−3, c2 = 2× 10−4, φ = 0.8,

SL = 0.2782 m/s and 4qR = 2.2263 × 106 J/Kg. An initial condition purely in the

acoustic variables with η1(0) = 0.002, ηi(0) = 0 ∀ i 6= 1 and η̇i(0) = 0 ∀ i = 1 to N

is given with an initial acoustic velocity of u′f (0) = 1.6 × 10−3, and the initial energy

due to fluctuations being E(0) = 4× 10−6. The system is linearly stable and the linear

evolution decays asymptotically without any transient growth. The nonlinear evolution

also decays asymptotically.

In a non-normal system, the transient growth obtained is dependent on the initial

condition applied to the system. The initial condition which maximizes the transient

amplification of energy is called the optimal initial condition. Figure 4.9 shows the

evolution of the linear and nonlinear system from the optimal initial condition for the

same linearly stable case as shown in Fig. 4.8. The energy due to fluctuations is retained

at the same value of E(0) = 4 × 10−6 as Fig. 4.8. However, in this case the linear

and nonlinear evolutions diverge within a short period of time. The linear evolution

exhibits a transient growth of a factor of 197 in the energy due to fluctuations until
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Figure 4.8: Evolution of acoustic velocity at the flame for (a) linearized system and (b)
nonlinear system. Evolution of the normalized energy due to fluctuations
E(t)/E(0) for (c) linearized system and (d) nonlinear system. All evolu-
tions are plotted along the acoustic time scale t. A purely acoustic initial
condition with u′f (0) = 1.6 × 10−3 and E(0) = 4 × 10−6 is seen to decay
monotonically in both linear and nonlinear evolutions. The other system pa-
rameters are α = 100, yf = 0.2, c1 = 2× 10−3, c2 = 2× 10−4, b/a = 0.5,
φ = 0.8, SL = 0.2782 m/s and 4qR = 2.2263× 106 J/Kg.
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Figure 4.9: Evolution of acoustic velocity at the flame for (a) linearized system and (b)
nonlinear system. Evolution of the energy due to fluctuations E(t)/E(0) for
(c) linearized system and (d) nonlinear system. All evolutions are plotted
along the acoustic time scale t. The optimal initial condition with u′f (0) =
7.8×10−5 and E(0) = 4×10−6 is seen to grow transiently and decay in the
linear evolution. The nonlinear evolution reaches a limit cycle of amplitude
|u′f |LC = 0.67. The other system parameters are α = 100, yf = 0.2,
c1 = 2 × 10−3, c2 = 2 × 10−4, b/a = 0.5, φ = 0.8, SL = 0.2782 m/s and
4qR = 2.2263× 106 J/Kg.

tmax = 1.5 and then asymptotically decays. Initially, the nonlinear evolution undergoes

lesser transient growth than the linear evolution but asymptotically reaches a limit cycle

with |u′f |LC = 0.67. This is seen from the insets in Figs. 4.9 (b & d).

From this example, it is evident that an initial condition with very small initial am-

plitude, if applied in an optimal manner, can cause transient growth in the energy of

the system. If this transient growth is high enough for nonlinear effects to become sig-

nificant, a system which is stable according to classical linear stability theory can be-

come nonlinearly unstable. Therefore in non-normal systems, even initial perturbations
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Figure 4.10: (a) Evolution of acoustic velocity with u′f (0) = −0.14 to a limit cycle of
amplitude |u′f |LC = 0.41 plotted along the acoustic time scale t. Enlarged
views of acoustic velocity evolution between (b) 0 < t ≤ 10, (c) 20 <
t ≤ 30 and (d) 1990 < t ≤ 2000. FFT of the signal between (e) 0 <
t ≤ 10, (f ) 10 < t ≤ 30 and (g) 30 < t ≤ 2000 showing change in the
dominant frequency during evolution. System parameters for the linearly
stable system are α = 100, yf = 0.2, c1 = 2 × 10−3, c2 = 2 × 10−4,
φ = 0.6, SL = 0.1231 m/s and 4qR = 1.6885× 106 J/Kg.

whose amplitude are small enough for linearization to appear apparently legitimate, can

cause the nonlinear evolution to reach self-sustaining oscillations.

4.10 Evolution of an initially decaying system

Nonlinear evolution of acoustic velocity for a linearly stable system is shown in Fig. 4.10

(a). It shows an initial decay with a higher frequency and then a shift to a dominant

mode of lower frequency. Despite the initial decay, the evolution reaches a self re-

peating limit cycle asymptotically. Analysis of the frequency content of the evolution
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Figure 4.11: Evolution of phase angle θ between acoustic pressure and heat release rate
fluctuations for linearly stable system with α = 100, yf = 0.2, c1 =
2× 10−3, c2 = 2× 10−4, φ = 0.6, SL = 0.1231 m/s and 4qR = 1.6885×
106 J/Kg for the evolution shown in figure 4.10(a). Inset figure shows
short term evolution of the phase angle θ. Evolutions are plotted along the
acoustic time scale t.

during different intervals of time is performed in order to identify the dominant modes.

Enlarged plots of the acoustic evolution are shown in Figs. 4.10 (b) to 4.10 (d).

Corresponding plots of amplitude |A| versus frequency f are shown in Fig. 4.10(e)

to Fig. 4.10 (g). Non-dimensional frequency for the fundamental mode of the duct is

0.5 with higher modes having multiples of this fundamental frequency. Figure 4.10 (e)

shows that initially the third mode is dominant during time 0 < t ≤ 10. Comparable

amplitudes for the first and the third mode are obtained for the evolution between 10 <

t ≤ 30 in Fig. 4.10 (f ) and then the first mode is seen to dominate the evolution from

Fig. 4.10 (g). Transfer of energy between modes causes the shift in dominant mode

during evolution.

The evolution of the phase θ between acoustic pressure and the heat release rate

oscillations is shown in Fig. 4.11. In a self evolving thermoacoustic system, the phase

between acoustic pressure and the heat release rate fluctuations is free to evolve and

change with time. From the inset in Fig. 4.11, it is observed that θ initially remains at

acute angles indicative of driving. However, it later evolves to obtuse angles, which is
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Figure 4.12: Linear stability boundary for the variation of angle of the flame α and
the flame location yf with the other parameters being c1 = 2 × 10−3,
c2 = 2× 10−4, b/a = 0.5 and φ = 0.6.

indicative of damping and remains at these obtuse values for many cycles. Finally the

evolution of the phase settles at an acute angle such that the driving from the unsteady

heat release rate balances the damping present in the system as shown by the asymptotic

behavior of the evolution of the phase. Phase between heat release rate fluctuations and

acoustic pressure is therefore only an indicator of stability that is local in time and

cannot be used to predict the asymptotic stability of the system.

4.11 Linear stability boundaries

The linear stability boundaries for the simultaneous variation of two system parameters

are obtained using the classical linear stability analysis. When the flame location yf and

the flame angle α are varied, the linear stability boundary is as shown in Fig. 4.12. Grey

areas indicate linearly unstable configurations. The laminar flame speed SL, the flame

angle α and the mean flow velocity ū are related dimensionally as

˜̄u sin α = SL , (4.54)

such that for a given φ, a variation in flame angle α translates to a variation in mean

flow velocity ˜̄u. For an equivalence ratio of φ = 0.6, the range of flame angles shown

in Fig. 4.12 translates to mean velocities within the range 0.13 − 0.71 m/s. It is ob-
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Figure 4.13: (a) Linear stability boundary for the ratio of burner to duct radius (b/a)
and the flame location yf with the other parameters being α = 100, c1 =
2× 10−3, c2 = 2× 10−4 and φ = 0.6. (b) Linear stability boundary for the
variation of damping coefficient c1 and the flame angle α with the other
parameters being α = 100, yf = 0.2, c2 = 2 × 10−4, b/a = 0.5 and
φ = 0.8.

served that a larger range of flame locations along the duct become unstable for sharper

flame, i.e. smaller flame angles. This result is similar to the linear stability boundary

determined for the Rijke tube system in Fig. 3.9.

Linear stability boundaries for the simultaneous variation of the heater location yf

with the burner to duct ratio (b/a) is given in Fig. 4.13 (a). It is observed that for

low values of burner to duct ratio, the system is linearly stable for all locations along

the duct. Low values for the burner to duct ratios indicate smaller fluctuations in heat

release rate as related in the expression for Ω defined in Eqn. 4.20. Linear stability

boundary for the simultaneous variation of the damping coefficient c1 and the angle of

the flame α is displayed in Fig. 4.13 (b). Increasing values of the damping coefficient

stabilizes the system and the region of instability is larger for sharper flames which

correspond to larger mean flow velocities.

4.12 Bifurcation plots from numerical continuation

Asymptotic state of the ducted premixed flame system is tracked for the variation of

system parameters to obtain bifurcation plots. Initially a periodic solution for a given

parameter value is determined by integrating the set of ordinary differential equations to

obtain the evolution of state vector χ as a function of time. With this periodic solution
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Figure 4.14: (a) Bifurcation plot for the variation of damping coefficient c1 with other
system parameters being α = 100, yf = 0.7, c2 = 1.5 × 10−3, φ = 0.75,
SL = 0.2352 m/s and 4qR = 2.0929 × 106 J/Kg. (b) Bifurcation plot
for the variation of mean velocity ū with other system parameters being
yf = 0.25, c1 = 2 × 10−2, c2 = 1.5 × 10−4, φ = 0.8, SL = 0.2782 m/s
and 4qR = 2.2263 × 106 J/Kg. The solid line gives the amplitude of the
stable limit cycles, dashed lines indicate unstable limit cycles, ◦ indicate
unstable steady states and • are stable steady states.

as the initial guess, the asymptotic state of the system for smooth variations of the

parameter from the initial value are obtained.

Application of the numerical continuation method described in Chapter 2 to systems

becomes progressively expensive when the number of degrees of freedom in the system

increase. In this section, numerical continuation is performed for a ducted premixed

flame with with N = 10 and P = 100. This resolution of the system has relative errors

Φ1,2 and Ψ1,2 less than 10% for further increase in N and P as shown in Fig. 4.3. The

results of continuation are shown in Figs. 4.14 (a & b). The measure chosen to display

the asymptotic state in the bifurcation plots is the amplitude of acoustic velocity at the

flame location |u′f |.

Bifurcation plot for the variation of damping coefficient c1 displays a hysteretic

behavior as shown in Fig. 4.14 (a). Large values for the damping coefficient c1 leads

to linearly stable systems. Decreasing values of the damping coefficient destabilize the

system through a sub-critical Hopf bifurcation followed by a fold bifurcation.

In another system configuration, a super-critical Hopf bifurcation is observed for the

variation of mean flow velocity ˜̄u as shown in Fig. 4.14 (b). The variation of the mean

flow velocity is related to the laminar flame speed as described in Eqn. 4.54. The range
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Figure 4.15: Nonlinear evolutions for α = 100, yf = 0.2, c1 = 2×10−3, c2 = 2×10−4,
φ = 0.8, SL = 0.2782 m/s and 4qR = 2.2263 × 106 J/Kg for initial
conditions with (a) Optimal initial condition with u′f (0) = 7.8 × 10−5,
(b) Initial condition with u′f (0) = 0.40, (c) rate of separation of the two
evolutions given in (a) and (b). All evolutions are plotted along the acoustic
time scale t.

of flow velocities ˜̄u shown in Fig. 4.14 (b) correspond to a variation in the equivalence

ratio φ within the range (0.67−0.84) when the flame angle α is fixed at 100. The occur-

rence of super-critical Hopf bifurcation is notable, as the Rijke tube model considered

in Chapter 3 displays only sub-critical Hopf bifurcation as explained in Section 3.4.2.

4.13 On the asymptotic nature of evolutions

The ducted premixed flame system is observed to display self-sustained oscillations as

shown in the inset of Fig. 4.9 (d). The asymptotic nature of the evolution needs to be

characterized in order to classify the self-sustained oscillation into a limit cycle, quasi-

periodic or chaotic oscillation. For the linearly stable system shown in Figs. 4.8 and

4.9, two nonlinear evolutions which differ only in the initial condition are shown in

Figs. 4.15 (a & b).

The two evolutions evolve to the same limit cycle even when all eigenvalues are

stable. This asymptotic behavior of the nonlinear evolution is characterized as a limit
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Figure 4.16: (a) Time evolution with periodically modulated evolution and (b) Phase
plot of evolution showing a quasiperiodic orbit. The system parameters
are α = 100, yf = 0.7, c1 = 2 × 10−3, c2 = 2 × 10−4, b/a = 0.5 and
φ = 0.6.

cycle using the Lyapunov exponent (Wolf et al., 1985). The first Lyapunov exponent

λ1 is a measure of the rate at which two nearby trajectories asymptotically diverge from

each other. A limit cycle is obtained when the value of λ1 becomes zero. In Fig. 4.15

(c), it is observed that the value of λ1 asymptotically reaches zero, which confirms that

this asymptotic state is a limit cycle.

For the system parameters chosen in Fig. 4.12, the flame angle is fixed at α = 100

and a flame location of yf = 0.7 is chosen. The asymptotic nature of the evolution

for this linear unstable system is evaluated. Time evolution of the acoustic velocity

fluctuations displays a strongly modulated repeating evolution in Fig. 4.16 (a). A three-

dimensional phase plot of the evolution is obtained by plotting the acoustic velocity u′

and pressure p′ along with the non-dimensional heat release rate fluctuations q̇′f . This

phase plot is shown in Fig. 4.16 (b). The trajectory does not form a closed orbit but

is seen to fill the surface of a torus. This indicates the quasiperiodic nature of the

asymptotic state. Similar behavior has been observed in the Rijke tube model as shown

in Fig. 3.10.

4.14 Summary

The non-normal nature of thermoacoustic interaction in ducted premixed flames is char-

acterized. The unsteady heat release rate from the flame front acts as a source of un-
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steady dilatation. Therefore the laminar flame front is modeled as a distribution of

monopole sources of sound. The energy due to fluctuations in the premixed flame-

acoustic system includes the energy due to the monopole sources in addition to the

fluctuations in acoustic pressure and velocity. This total energy due to fluctuations is

used as a measure of non-normal transient growth. Parametric study of the variation in

transient growth due to change in parameters such as flame angle and flame location is

conducted. Larger transient growth is observed when convective effects dominate.

Traditionally, thermoacoustic instabilities have been analyzed in terms of an acous-

tic model which is driven by combustion. However, the thermoacoustic system has

more degrees of freedom than the number of acoustic modes. These additional degrees

of freedom represent the internal degrees of freedom of the flame front which we re-

fer to as the internal flame dynamics. In addition to the acoustic variables, the optimal

initial condition for a linearly stable thermoacoustic system displays significant projec-

tions along the monopole source strength distribution or the heat release rate variables.

In order to accurately capture the non-normal effects, the internal degrees of the flame

front must be accounted for in the model for the evolution of the thermoacoustic system.

Sub-critical transition to instability has been thought of as being caused by a large

amplitude initial perturbation to a linearly stable system. In a linearly stable case, even a

small but finite amplitude initial perturbation is shown to reach limit cycle. In contrast,

for the same thermoacoustic system an initial condition purely in acoustic variables

is seen to monotonically decay. Therefore for non-normal systems, even initial per-

turbations whose amplitudes are small enough for linearization to appear apparently

legitimate, can cause the nonlinear evolution to reach self-sustaining oscillations.

Nonlinear evolutions can display dominant mode change during the evolution in

a linearly stable case when the evolution initially decays. For this initially decaying

evolution, the phase between acoustic pressure and the heat release rate fluctuations

was shown to drift over many cycles between values indicative of driving and damping

before settling to a constant value. Therefore, the phase between acoustic pressure and

heat release rate fluctuations is an indicator of stability that is local in time and cannot

be used to determine the asymptotic stability of a thermoacoustic system.
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The linear stability boundary for the simultaneous variation of different system pa-

rameters were obtained. It was observed that smaller flame angles, low values for the

damping coefficient and larger values for the burner to duct ratio cause the system to

become linearly unstable. Bifurcation plots for the variation of system parameters has

been obtained by the method of numerical continuation. The ducted premixed flame

model exhibits both sub- and super-critical Hopf bifurcations. The asymptotic nature of

the evolutions was investigated for different system configurations and behavior such as

limit cycle and quasiperiodic states were observed.

125



CHAPTER 5

CONCLUSIONS & FUTURE WORK

5.1 Conclusions

Investigations of stability in thermoacoustic systems have largely been focussed on

modal analysis. Both the linear and nonlinear modal stability analyses do not cap-

ture transients in the system. Inability to account for the transient effects can lead to

erroneous stability predictions for the thermoacoustic system. Time domain models ac-

count for the transients in the system and are used in the present work. Time domain

models for two typical thermoacoustic systems are chosen for stability analysis: (1) an

electrically heated Rijke tube and (2) a ducted premixed flame. In the Rijke tube, the

source of heat release rate oscillations is modelled using a correlation between acoustic

velocity fluctuations and the unsteady heat release rate which contains an explicit time

delay. For the ducted premixed flame, the unsteady heat release rate is modelled using

an evolution equation for a premixed flame front, known as G-equation. These models

for the unsteady heat release rate can be coupled to the differential equations govern-

ing the acoustic field within the duct, to model the coupled thermoacoustic system. The

present analysis adopts methods and tools from dynamical systems’ theory to determine

both the linear and nonlinear stability of thermoacoustic systems.

In the present work, numerical continuation method was implemented to determine

the bifurcation plots for a Rijke tube system and a ducted premixed flame system. The

present thesis is the first work in which numerical continuation methods have been ap-

plied to the investigation of thermoacoustic systems with an explicit time delay. Both

the Rijke tube and ducted premixed flame systems display Hopf bifurcations beyond

which the system exhibits periodic oscillations. Sub-critical Hopf bifurcations are ob-

served in the Rijke tube system while both sub- and super-critical Hopf bifurcations oc-

cur in the ducted premixed flame system. It is shown that only sub-critical bifurcations



are possible for the model of Rijke tube considered in this thesis. In both the thermoa-

coustic systems considered, a higher heater power or larger mean flow causes increased

acoustic driving which destabilizes the system. Also, increased acoustic damping is

seen to stabilize the systems. Non-monotonic stability changes are observed when the

location of unsteady heat release rate is varied. Analytical and numerical methods from

dynamical systems’ theory have been employed to characterize regions of global sta-

bility, bistability and global instability in thermoacoustic systems. The present work

demonstrates the feasibility of employing numerical continuation method to determine

both the linear and nonlinear stability of thermoacoustic systems in a unified frame-

work. Numerical continuation can be employed to identify the safe ranges of operation

in gas turbines and rocket motors, in order to avoid instabilities.

Previous works consider that the asymptotic state during instability is a limit cycle

whose amplitude is determined by the balance of acoustic driving and damping in the

system. In the present work, a variety of alternate asymptotic states are observed such

as period-2, period-4, quasiperiodic and chaotic oscillations. This is in agreement with

the recent findings of Kabiraj et al. (2010). It is observed multiple attractors can co-

exist and that a system could reach any one of the asymptotic states depending on the

initial perturbation. Further, it is observed that finite time transient growth can play a

role in determining the asymptotic state to which a system evolves.

In order to characterize the transient growth in a system, the energy due to fluctu-

ations is chosen as a measure or norm. The chosen measure should account for con-

tributions from all the state variables. This ensures that all the relevant constituent

phenomena in the system, represented by the state variables, are included in the mea-

sure. There is no common consensus in the literature, on the appropriate expression for

energy due to fluctuations in compressible reacting flows. Therefore, there is a need

to define an appropriate disturbance energy for the ducted premixed flame system. A

measure for the energy due to fluctuations in a ducted premixed flame is derived in the

present thesis. As the unsteady heat addition acts as a volumetric source, the premixed

flame front is modelled as a distribution of monopole sources. The energy due to fluc-

tuations considered in this analysis accounts for the energy of the monopole sources

in addition to the acoustic energy. This measure is used to characterize the transient
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growth in ducted premixed flame system.

Transient growth observed in a non-normal system depends on the distribution of

initial perturbation among the different state variables. Optimal initial conditions which

cause maximum transient growth, can be identified using singular value decomposition

for each system configuration. These optimal initial conditions have significant projec-

tions along the monopole source strength distribution. This is evident from the consid-

erably larger transient growth observed for the optimal initial condition when compared

with a purely acoustic initial condition. In a ducted premixed flame, larger transient

growth is identified with system configurations where convective terms dominate the

evolution, i.e. for sharper flames located near the half duct length. Identification of

system configurations with large transient growth is important in investigating the role

of transient growth in causing sub-critical transition to instability.

Traditionally, sub-critical transition to instability or triggering, has been thought to

be caused by a finite amplitude disturbance to a linearly stable system. However, even a

small but finite amplitude perturbation can cause triggering in non-normal systems. In

a linearly stable case for the ducted premixed flame system, a small but finite amplitude

optimal initial perturbation reaches a limit cycle while an initial condition purely in the

acoustic variables with the same energy is seen to monotonically decay. Therefore in

non-normal systems, even initial perturbations whose amplitudes are small enough for

linearization to appear apparently legitimate, can cause the nonlinear evolution to reach

self-sustaining oscillations.

The criterion for the occurrence of instability in thermoacoustic systems requires

that the phase angle θ between the acoustic pressure and unsteady heat release rate lies

between the range which indicates acoustic driving, i.e. −90◦ < θ < 90◦. The acoustic

driving due to unsteady heat release rate oscillations must overcome the acoustic damp-

ing in the thermoacoustic system in order to cause instability. A linearly stable system

configuration is chosen for the ducted premixed flame. An initially decaying nonlin-

ear evolution, which asymptotically evolves to a limit cycle is considered. During the

nonlinear evolution, the dominant mode of oscillation changes with time. The phase

between acoustic pressure and the heat release rate fluctuations during such a nonlinear

evolution is seen to drift between values indicative of driving and damping before set-
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tling to a constant value as the evolution reaches a limit cycle. This drift occurs over

many cycles of oscillations. Therefore, the phase between acoustic pressure and heat

release rate fluctuations is an indicator of stability that is local in time and cannot be

used to determine the asymptotic stability of a thermoacoustic system.

In summary, the thesis of the present work proposes that, a non-modal approach to

the stability analysis is necessary to characterize the stability of thermoacoustic systems

accurately and that tools from dynamical systems’ theory can be used effectively to

determine both the linear and nonlinear stability of thermoacoustic systems.

5.2 Scope of future work

Stability analysis of thermoacoustic systems is commonly performed using modal anal-

ysis methods. This approach does not account for the transient effects in the system.

However, the present thesis establishes that it is essential to account for transient growth

in the system, in order to accurately capture the asymptotic stability of thermoacous-

tic systems. In future, low order models of both linear and nonlinear systems can be

obtained using linear and nonlinear system identification techniques. The identified

low order models can then be used to determine stability of the system accounting for

transient growth due to non-normality.

In the present thesis, optimal initial perturbations are identified for the ducted pre-

mixed flame system through singular value decomposition of the linear operator. If the

variables of the state vector are chosen such that the square of its 2-norm equals the

energy due to fluctuations, maximal amplification occurs when the initial perturbation

is along the first right singular vector. This method of singular value decomposition

cannot be used to obtain the optimal initial condition if the energy due to fluctuations

cannot be written as the square of the 2-norm of the state vector. Also, the optimal initial

condition obtained from singular value decomposition ensures maximum amplification

during the evolution of a linear system. The optimal initial condition for the nonlinear

system can be significantly different. The method of singular value decomposition can-

not be employed to obtain the nonlinear optimal initial condition. In order to handle the
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above mentioned two scenarios, the variational technique of adjoint optimization can

be used to identify both the linear and nonlinear optimal initial condition of a system.

Future work can focus on obtaining the nonlinear optimal initial condition of the ducted

premixed flame system using adjoint optimization technique to compare it with the lin-

ear optimal initial condition obtained from singular value decomposition in the present

work.

Numerical continuation was employed to obtain stability boundaries and bifurcation

plots for the reduced order models of the Rijke tube system and ducted premixed flame

system in the present thesis. The bulk of computation time during continuation is uti-

lized to determine the Jacobian and monodromy matrices. Continuation methods which

can reduce the time taken for this calculation or bypass this step will be more efficient

and would be capable of determining bifurcation plots faster than conventional contin-

uation methods. Matrix free methods in continuation bypass the determination of the

Jacobian matrix completely and are therefore efficient. The acceleration in computa-

tional time achieved can also make it possible to perform continuation for systems with

larger number of degrees of freedom. In future, the application of matrix free continua-

tion methods to the bifurcation analysis of thermoacoustic systems can be explored.
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APPENDIX A

Loss of linear stability

Loss of linear stability occurs when a root of Eqn. (3.18) acquires a positive real part.

When the heater is located in the first half of the duct, i.e. 0 < yf < 0.5, λ = 0 will

never satisfy Eqn. (3.18). Therefore, static bifurcations such as trans-critical, pitchfork

and saddle-node bifurcations cannot occur (Strogatz, 2000). Thus, when the heater is

placed in the first half of the duct, the steady state becomes unstable only through a

Hopf bifurcation. The parameter value at which the Hopf bifurcation occurs can be

obtained as illustrated in Section 3.4.1.

When the heater is located in the second half of the duct, i.e. 0.5 < yf < 1, the

condition λ = 0 gives the following relation:

4(0, τ) = a1 + a2 = 0 (A.1)

The following relation between the non-dimensional power KS required to destabi-

lize the system through a static bifurcation and the heater location yf is derived with the

constants a1 = π2 and a2 =
√

3kπ/4 sin(2πyf ) as in Section 3.4.1.

KS = − 4π√
3 sin(2πyf )

(A.2)

Similarly, for any heater location in the range (0.5 < yf < 1), the non-dimensional

power KH1 required for a Hopf bifurcation can be derived from equation is given as

below:

KH1 =

(
16(ω4

1 + (a2
0 − 2a1)ω

2
1 + a2

1)

3π2 sin2(2πyf )

)1/2

; (A.3)

In the above expression, we set ω1 = π in order to approximate the value of KH1.

From the figure A.1, we see that the power required for the Hopf bifurcation KH1 is

much lower than that required for a static bifurcation KS . Therefore, it is concluded in



Figure A.1: Comparison of analytical linear stability boundaries for a static or dynamic
bifurcation as a function of non-dimensional heater power and heater loca-
tion. Solid line gives the minimum power required for a dynamic bifurca-
tion KH1 and the dashed line gives the minimum power required for a static
bifurcation KS . Common parameters are c1 = 0.1, c2 = 0.06. This result
is independent of time lag.

the present model that loss of linear stability occurs only through a Hopf bifurcation.

Since both the expressions in Eqns. (A.2) and (A.3) do not involve time lag τ , the above

conclusion is valid independent of the value of τ .
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APPENDIX B

Expressions for slow flow equations

The expressions for the coefficients of the slow flow amplitude equation B1 and B2 as

given in Eqn. (3.38) are expanded below:

B1 =
N1

D
and B2 =

N3

D
, (B.1)

where the denominator D, the numerator for the first order term N1 and for the third

order term N3 are as given below.

D = 512ω2
[
∆3

c + ∆2
cπ

2 + ∆cπ
4 + π6 + 2 cos (2ωτ) [π4∆c + π2∆2

c ]
]

+ 512ωτ
[
sin (ωτ) [π6∆c + ∆4

c ] + sin (3ωτ) [π2∆3
c + π4∆2

c ]
]

+ 128
[
ζ2
1 [π2∆2

c + π4∆c + π6 + ∆3
c ] + τ 2[∆5

c + π4∆3
c + π6∆2

c + π2∆4
c ]

]

− 256τζ1 cos (ωτ)
[
π6∆c + ∆4

c + 2π4∆2
c + 2π2∆3

c

]

+ 256 cos (2ωτ)
[
ζ2
1 [π4∆c + π2∆2

c ] + τ 2[π4∆3
c + π2∆4

c ]
]

− 256τζ1 cos (3ωτ)
[
π2∆3

c + π4∆2
c

]
,

(B.2)

N1 = 256ω
[
sin (ωτ) [π6 + ∆3

c ] + sin (3ωτ) [π4∆c + π2∆2
c ]

]

+ 128δτ
[
π6∆c + π4∆2

c + π2∆3
c + ∆4

c

]

− 128δζ1 cos (ωτ)
[
π6 + ∆3

c − 2[π4∆c + π2∆2
c ]

]

+ 256δτ cos (2ωτ)
[
π4∆2

c + π2∆3
c

]

− 128δζ1 cos (3ωτ)
[
π2∆2

c + π4∆c

]
,

(B.3)



N3 = 9ω[[6π6∆c + 2π2∆3
c − 4π4∆2

c ] (sin (2πyf + ωτ)− sin (2πyf − ωτ))

+ 4π4∆2
c (sin (2πyf + 3ωτ)− sin (2πyf − 3ωτ) + 2 sin (3ωτ))

+ 4 sin (ωτ) [π2∆3
c − 2π4∆2

c + 3π6∆c]]

− 9ζ1 cos (ωτ) [8π4∆2
c + 6π2∆3

c + 6π6∆c]

+ 9τ cos (2ωτ) [2π2∆4
c + 10π4∆3

c ]− 36ζ1 cos (3ωτ) π4∆2
c

+ 9τ [2π4∆3
c + 6π6∆2

c + 4π2∆4
c ] (1 + cos (2πyf ))

− 9ζ1[3π
2∆3

c + 3π6∆c + 4π4∆2
c ] (cos (2πyf + ωτ) + cos (2πyf − ωτ))

+ 9τ [π2∆4
c + 5π4∆3

c ] (cos (2πyf + 2ωτ) + cos (2πyf − 2ωτ))

− 18ζ1π
4∆2

c (cos (2πyf + 3ωτ) + cos (2πyf − 3ωτ))

(B.4)

134



APPENDIX C

WENO scheme

The high resolution WENO scheme uses a six point stencil formed of three sub-stencils

each with four points. It will therefore give fifth order accuracy in the smooth regions

and third order accuracy in the discontinuous regions. Implementation of WENO as-

sumes that the function ξ′(X, t) is continuous, with piece-wise smooth spatial deriva-

tives; i.e. the discontinuities in the spatial derivative are isolated. The domain can then

be discretised with Xi being the set of uniform discretisation points along the flame

front with an equidistant spacing of 4X . If, ξi = ξ(Xi) and

∆+ξk = ξk+1 − ξk; ∆
−ξk = ξk − ξk−1 , (C.1)

are as defined above, then the approximation for the spatial derivative at the ith location

using a left biased stencil which is written in (C.2) and is given by a weighted average

of the values due to the individual stencils 0, 1 and 2 shown in (C.3).

∂ξ′

∂X
= ξ−X,i , (C.2)

ξ−X,i = w0,NLξ−,0
X,i + w1,NLξ−,1

X,i + w2,NLξ−,2
X,i , (C.3)

with

ξ−,0
X,i =

1

3

∆+ξi−3

∆X
− 7

6

∆+ξi−2

∆X
+

11

6

∆+ξi−1

∆X
, (C.4)

ξ−,1
X,i = −1

6

∆+ξi−2

∆X
+

5

6

∆+ξi−1

∆X
+

1

3

∆+ξi

∆X
, (C.5)

ξ−,2
X,i =

1

3

∆+ξi−1

∆X
+

5

6

∆+ξi

∆X
− 1

6

∆+ξi+1

∆X
, (C.6)

where ξ−,s
X,i is the third order approximation to ξ−X,i on the sth sub-stencil. In an ENO

scheme, one of the ξ−,s
X,i would be chosen based on the relative smoothness of the sub-



stencil. The nonlinear weight of the derivative calculated in a sub-stencil, depends on

the smoothness of the function derivative in that sub-stencil. The modified smoothness

indicators are given in (C.7)-(C.9) (Jiang and Shu, 1996; Zhang and Shu, 2007):

IS0 = (ξi−2 − 4ξi−1 + 3ξi)
2 , (C.7)

IS1 = (ξi−1 − ξi+1)
2 , (C.8)

IS2 = (3ξi − 4ξi+1 + ξi+2)
2 , (C.9)

which are then used to calculate the nonlinear weights as given below, with typical

values for p = 2 and ε = 10−6,

µs =
ws,L

(ε + ISs)r
, (C.10)

ws,NL =
µs

2∑
s=0

µs

. (C.11)

Here the linear weights ws,L for the sth sub-stencil at point are made to satisfy the

consistency condition, such that

2∑
s=0

ws,L = 1 . (C.12)

When the linear weights are w0,L = 0.3; w1,L = 0.6; w2,L = 0.1, we obtain the fifth

order accurate solution in the smooth regions. While using WENO with a left biased

stencil, we require derivative values for the first three points and the last two points. The

appropriate fifth order accurate explicit scheme is used to calculate the first derivative

of the function values at boundary cells (Zhong, 1998).
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APPENDIX D

Linear operator

If the matrix governing the linearized thermoacoustic system as given in the set of

Eqns. (4.41), (4.44) and (4.46) is, they can be written as given in equation (D.1) for

the state vector χ in equation (D.2). Then the sub-matrices can be expanded as given in

(D.3) to (D.6):

B =


 C2N×2N D2N×P

EP×2N FP×P




(2N+P )×(2N+P )

, (D.1)

χ =




η1

(−η̇1/π)

η2

(−η̇2/2π)

.

.

(−η̇N/Nπ)

H1

H2

.

.

HP




(2N+P )×1

, (D.2)

C =




0 −π . . . . . .

π −2ζ1k1 . . . . . .

. . 0 −2π . . . .

. . 2π −2ζ2k2 . . . .

. . . . . . . .

0 −Nπ

. . . . . Nπ −2ζNkN




2N×2N

, (D.3)



D =
√

2




0 0 . . 0

0 sin(πyf ) . . 2 sin(πyf )

0 0 . . 0

0 sin(2πyf ) . . 2 sin(2πyf )

0 0 . . 0

0 sin(3πyf ) . . 2 sin(3πyf )

0 0 . . 0

. . . . .

. . . . .

0 0 . . 0

0 sin(Nπyf ) . . 2 sin(Nπyf )




2N×P

, (D.4)

E =




0 0 0 0 . . 0 0

θ1cos(πyf ) 0 θ1cos(2πyf ) 0 . . θ1cos(Nπyf ) 0

. . . . . . . .

. . . . . . . .

θ1cos(πyf )/2 0 θ1cos(2πyf )/2 0 . . θ1cos(Nπyf )/2 0




P×2N

,

(D.5)

F =




0 . . . . . . .

0 −θ2 . . . . . .

. θ2 −θ2 . . . . .

. . θ2 −θ2 . . . .

. . . . . . . .

. . . . . . . .

. . . . . . θ2 −θ2




P×P

. (D.6)

Here Hi corresponds to the monopole strength averaged over the cross-sectional area

of the duct and the values of constants θ1 and θ2 are defined in equation (4.46). The

spatial derivative is approximated with the first order backward difference formula and

the integration for the source term is approximated with a trapezoidal integration over

all points along the flame front.
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